基礎現代化学

試験対策教科書

作成:2011年度入学 S2-19 三宅健之

第1章 原子の構造

1. 原子の誕生と構成

ビッグバン以降、宇宙に様々な粒子、元素が生成した。現在、宇宙における元素の存在度は水 素が最も高く、ヘリウムがそれに続く。原子番号(陽子数)が偶数のものは、それが奇数のものと 比べて存在度が高い傾向にある。原子核についての問題は複雑な多体問題であるため、このこと についてのはっきりとした解答は未だ得られていないが、スピンの関係から電子が対をつくって いる方が安定であるという、エネルギー準位と同様のモデルで説明する理論がある。(注1)

電磁波を吸収する黒体から電磁波が放出されることを黒体輻射といい、例えば鉄の塊を加熱す ると黒、赤、橙、黄と色が変化していくように、温度の上昇と共に極大波長は低波長にずれてい く(Wienのずれの法則)。宇宙のあらゆる方向から届く電磁波の極大波長は、現在宇宙が3Kで あることを示しており、その事実から、宇宙が約150億年前のビッグバンによって生成し、そ の時の温度は10¹⁴K以上であったことが推測される。

0.1 秒後	10 ¹¹ K	陽子と中性子が同数生成
1 秒後	10 ¹⁰ K	陽子:中性子=5:1の割合で生成
10 ³ 秒後	10 ⁸ K	陽子と中性子が衝突して He の原子核までが生成
10 万年後	4000K	Heの原子核や陽子が電子と結合し、プラズマ状態から中性の原子となる

ビッグバンからの宇宙の温度の低下と原子生成の過程は次のようである:

宇宙空間の原子が集まって星を形成し、星が重力で収縮することで原子が運動エネルギーを得て恒星内部の温度が上昇していく。温度が10⁷K程度に上昇すると、核融合によってHe原子が生成する(注2)。さらに10⁸K程度になるとHe核の核融合によってC原子やO原子が生成し、C原子などを触媒として陽子(¹/₁H)から効率的にHeが生成する(CNサイクル、注3)。核融合によって⁵⁶Feまでが生成し、それより重い元素は超新星爆発によって生成するので、宇宙での存在度は極めて小さい。

2. 原子と電子 ボーアからシュレーディンガーへ

〇原子を構成する粒子

1897年、イギリスのトムソンは、電場によって曲げられた陰極線を、電場と直角な磁場を かけて直進させる実験によって陰極線の比電荷(電荷と質量の比)を測定した。トムソンはこのこ とを、陰極線が負の電荷をもった粒子から成り立っているという考えから説明し、素粒子(物質 を構成する粒子で、物質の種類によらない)としての電子の存在を明らかにした。

ー方、ドルトンによる原子説が確立し、1902年、ト ムソンは広がった分布を持つ正電荷の中に負電荷を持つ 電子が運動しているプラムプリン型原子モデル(左)、長岡 半太郎は電子が原子核の周りを周回する土星型原子モデ ル(右)を提唱した。しかし 1909 年、ラザフォードらの行った α 粒子の散乱実験(金箔に He の 原子核を当てる実験)において、もし原子がプラムプリン型であるならば金箔を素通りするか、 あるいは僅かに方向が変化するだけであろう α 粒子が時々非常に大きく曲げられる現象(ラザフ ォード散乱)が観測された。その実験の結果からラザフォードは、原子の正電荷が原子の中心部 分に集中していることを示し、トムソンの原子モデルを否定、土星型モデルに似たラザフォード 型原子モデルを提唱した。

〇水素原子の構造

スイスのバルマーは、水素放電管から出る光をプリズムで分散させ写真乾板に焼きつけると特定の波長の光のみ数本の線(線スペクトル)として現れることを発見し、(水素原子の線スペクトルのうち近紫外から可視光の領域にあるものをバルマー系列といい、その他、紫外部及び赤外部にも線スペクトルの系列が観測される)その波長が次の公式に従うことを実験的に見出した:

$$\lambda = H \frac{m^2}{m^2 - 2^2}$$
 H = 364.56nm, m = 3,4, ...

この公式はのちに、スウェーデンのリュードベリによって一般化される:

ここで、H=364.56 が当てはまるのはn = 2のときのみであるが、リュードベリ定数は常に一定である。また、スイスのリッツは、一般に多くの複雑な原子スペクトルも2つの項の差で表されるとして、この式を統一的に表現した(リッツの結合則)。

さて、ラザフォードらの貢献により、原子の構造が見えてきたかのように思われたが、長岡・ ラザフォードのモデルにはいくつか難点がある。例えば、電子は自身の加速度運動により、電磁 波を放出して絶えずエネルギーを失うので、やがて原子核に吸収されてしまうはずだし、また放 出される電磁波の波長も連続的に変化するはずであるが、前者は明らかに矛盾、後者も原子の発 光線スペクトルが不連続的に観測されることと矛盾する。

これらの矛盾を解決したのがデンマークのボーアである。ボーアは新たな原子モデルを提唱するにあたり、次の3つの条件を仮定し、それらの条件以外は古典物理学を適用するとした(注4):

①定常状態…原子はそのエネルギーがとびとびの値 *E*₁, *E*₂, …, *E*_n,…のみをとる定常状態で存在し、定常状態においては電磁波の放出および吸収は行われない。

②振動数条件…ある定常状態から別の定常状態に移行するときに電磁波の吸収や放出が起こる。 状態間の遷移は次式で表される:

 $\Delta E = E_n - E_m = hv$ (h:プランク定数、v:電磁波の振動数) ③量子条件…電子の角運動量はとびとびの値をとる:

$$l = m_e \text{vr} = n \left(\frac{h}{2\pi}\right) = n\hbar$$
 n : \equiv 子数

これらから、電子のエネルギーを求める(注5)と、

$$E_n = -\frac{m_e e^4}{8h^2 {\varepsilon_0}^2} \times \frac{1}{n^2}$$

となる。これより、量子数 n の水素原子のエネルギーはn²に反比例することがわかる。また、 基底状態における電子の回転半径は、n に 1 を代入して、

$$r_1 = \frac{h^2 \varepsilon_0}{\pi m_e e^2} = 5.29 \times 10^{-11} \text{m} = 0.529 \text{\AA}$$

これをボーア半径という。

ここで、水素原子の異なる定常状態間のエネルギーの差異は、

$$\Delta \mathbf{E} = \frac{m_e e^4}{8h^2 \varepsilon_0^2} \left(\frac{1}{n^2} - \frac{1}{m^2}\right)$$

となる。これとリュードベリの式との対応から、リュードベリ定数の理論値が求められる(注6)。

ところで、従来の原子モデル以外にも、古典物理論からは説明のつかない様々な現象が指摘されていた。例えば、星はあらゆる波長の光を吸収し、また放出する理想的な黒体とされ、温度と 星が放射する光の強度分布の関係が調べられたが、実際とは異なる結果しか導き出せなかった。 そこでドイツのプランクは、エネルギーにも最小単位(hv)があり、量子化されている(とびとび の値をとる)と考え、実際の様子をうまく説明する式を導いた。また、金属の表面に光を当てる と電子が飛び出す光電効果という現象があるが、アインシュタインは、波動である光にも粒子と しての性質があると考え、プランクと同じくエネルギーの量子化をもってこの現象を説明した。 古典物理学を適用しつつ、量子化の考えを取り入れて新しい原子モデルを提案したボーアの功績 は、まさにこれら2つの理論の架け橋となったと言えるだろう。

〇電子の波動性

さて、量子化という考え方によって従来の原子モデルの様々な問題を解消したかに見えたボー アの原子モデルにも、実は欠陥があった。それは主に次の3つである:

- ・何故量子化が起こるか証明されていない。
- ・化学結合がどのようにして出来ているかを説明できない。
- ・水素原子にしか適用できない。つまり、複数の電子が存在する系には適用できない。

これらの欠陥を解消する概念として、「電子の波動性」を考えてみよう。

電子の波動性とは、個々の電子の振る舞いはその存在位置を表す波で表現できる、という考え 方であり、その根拠となるのがダブル・スリットの実験である。2つの細長いスリットの入った 板に向かって電子を打ち出し、板の先にあるフィルムに記録するという実験であるが、時間が経 つにつれてフィルム上に干渉縞が現れる。打ち出された多くの電子が互いに干渉したからではな いかと思うかもしれないが、十分に時間間隔を空けて1個ずつ電子を放出した場合でも、さらに は1個だけ電子を打ち出したフィルムを集めて重ねた場合でも、同様に干渉縞が現れるのである。 また、電子がどちらのスリットを通ったかを特定しようとして、スリットの片方を塞いでしまう と、縞は消えてしまう。これらは、1個の電子が2つの経路を通って同じ位置に到達したことを 示していて、そこから電子は波としての性質をもち、その波は電子の存在確率と結びついている ということが推測される。つまり、電子は原子核の周囲の一定の軌道上を周回しているのではな く、波として核の周りに確率的に分布しているのである。

○波動関数とシュレーディンガー方程式

オーストリアのシュレーディンガーは、粒子の波動性を表す関数(波動関数)が満たすべき微分 方程式(シュレーディンガー方程式)を導いた:

$$\left[-\frac{\hbar^2}{2m}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) + V(x, y, z)\right]\psi(x, y, z) = E\psi(x, y, z)$$

m:粒子の質量、h:プランク定数、
$$\hbar = \frac{h}{2\pi}$$

これを①式とする。①を、

$$\nabla^{2} = \frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial z^{2}} (\exists \mathcal{I} \exists \exists \mathcal{I}, \exists \mathcal{I} \exists \mathcal{I}, \forall \mathcal{I} \exists \mathcal{I}$$

として、次のように略記することもある(注7):

 $\widehat{H}\psi(x,y,z) = E\psi(x,y,z)$

ハミルトン演算子の第1項は運動エネルギーを求める演算子で、第2項はポテンシャルエネルギーに対応している。2つのエネルギーを加えると全エネルギーになるが、①の右辺のEはその 全エネルギーである。つまり、ハミルトニアンは、全エネルギーを求める演算子である。

演算子を使って実際にエネルギーの値を求めることを考えよう。波動関数 ψ の複素共役 $\bar{\psi}$ を②の左側からかけて積分をとると、

$$\iiint_{-\infty}^{\infty}\psi\left(-\frac{\hbar^{2}}{2m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)+V\right)\psi dxdydz = \iiint_{-\infty}^{\infty}\bar{\psi}E\,\psi dxdydz = E\iiint_{-\infty}^{\infty}\bar{\psi}\psi dxdydz$$
$$= E\iiint_{-\infty}^{\infty}|\psi|^{2}dxdydz$$

となる。この∭_{-∞}[∞]|ψ|²dxdydzがどのような物理量を表すかは物理学上の論争があったが、ボルンによって、空間内のある点に電子が存在する確率を表すと解釈されるようになった。したがって、

$$\iiint_{-\infty}^{\infty} |\psi|^2 dx dy dz = 1$$

が成り立つ。つまり、全空間を探せば電子は必ずどこかにいるということであり、これを波動関数の規格化条件という。(注8)ところで、実際にシュレーディンガー方程式を満たす波動関数については、簡単な例として、1次元かつポテンシャルV = 0の場合の波動関数の導出を注9に示すので参照されたい。

〇水素原子の波動関数

注9では、シュレーディンガー方程式を1次元かつポテンシャルV=0という条件の下で考え たが、実際の水素原子の中の電子については次のようになる:

$$\left[-\frac{\hbar^2}{2m}\nabla^2 - \frac{e^2}{4\pi\varepsilon_0 r}\right]\psi(r,\theta,\varphi) = E\psi(r,\theta,\varphi)$$

ここで、 $-\frac{e^2}{4\pi\epsilon_0 r}$ は核と電子のクーロン相互作用によるポテンシャルエ ネルギーを表す(これはボーアのモデルでも同じである)。また、 (r, θ, φ) は電子の座標の極座標表示であり、それぞれ $[0,\infty)$ 、 $[0,\pi]$ 、 $[0,2\pi]$ の区間 で変化する。このシュレーディンガー方程式を解いて得られる波動関 数は、

 $\psi_{n,l,m}(r,\theta,\varphi) = R_{n,l}(r)Y_{l,m}(\theta,\varphi)$ $R_{n,l}(r): 動径部分、Y_{l,m}(\theta,\varphi): 角度部分$ となる(これの導出過程については難しいので省略する)。この式において、3つの量子数 n,l,m が現れているが、これは原子が3次元であることを考えると納得できる。また、波動関数だけで なくエネルギー固有値 E もセットで求まり、その値は、第1回で示したように

$$E_n = -\left(\frac{m_e e^4}{8{\varepsilon_0}^2 h^2}\right) \left(\frac{1}{n^2}\right) \quad n = 1, 2, 3, ...$$

となる。

波動関数に現れる量子数は、n(主量子数)が節の総数および軌道のエネルギー準位を、l(方位量子数)が大まかな軌道の形(角度部分にある節の数)を、m(磁気量子数)が軌道の向き(節面、xyzなど)を決めていて、それらの値によって次のように軌道の名称が決まる:

п	l	m	名称	п	l	т	名称	
1	0	0	1s	3	0	0	3s	
2	0	0	2s	3	1	-1,0,1	3p	
2	1	-1,0,1	2p	3	2	-2,-1,0,1,2	3d	

(以下略)

ここで、*n*,*l*,*m* は整数であり、*n* = 1,2,3,…、*l* = 0,1,2,…,(*n* - 1)、*m* = -*l*, -(*l* - 1),…,(*l* - 1),*l*の 範囲で量子数が決められることに注意する。次にそれぞれの軌道の概形を示す(左上:s軌道、右 上:p軌道、下:d軌道)

もちろんこの軌道の図の外側にも電子が存在する確率はあるが、内側に電子が分布する確率が高い。主量子数 n=1,2,3,…のときの軌道が、それぞれ K 殻、L 殻、M 殻…に対応している。また、 p 軌道、d 軌道、…には添字があるが、それらのエネルギー準位は等しく、そのような状態を「縮退」という。

次に、1s~3d 軌道の波動関数を示す:

ここで、上はψのグラフ、下は4πr²ψ²のグラフである。後者は極座標系で核からの距離 r~r+dr の範囲(体積4πr²drの素片)に電子が存在する確率、つまり核の周りの電子の動径分布を示してい る。特に、1s 軌道の電子が核からどの距離にいる確率が最大であるかを算出するとボーア半径 に一致する。また、それぞれの軌道の特徴としては、

•1s、2s、3s 波動関数はいずれも球対称(rのみに依存し、 θ , φ に依存しない)である。一方、 $\psi = 0$ となる点(節)の数が異なる(1sではr = ∞ の1つであるが、2sではもう1つ、3sではさらにもう1つある)。

・2s、2p 波動関数は主量子数が等しく、エネルギーが同一(多電子原子では異なることに注意) である。一方、2s 軌道の節面は原点を通らない球面(動径節)であるのに対し、2p 軌道の節面は 原点を通る平面(方位節)である。

などが挙げられる。

3. 元素の周期性

〇多電子原子の電子配置

ここまで、水素原子の構造やエネルギーについて述べてきたが、実は水素原子に限らず、He⁺や Li²⁺など、核の電荷や質量が異なるだけの1電子原子は、シュレーディンガー方程式を解くこと によってエネルギーが求まる。しかし、多電子原子の場合、電子間の反発力を考慮しなければな らず(多体問題)、方程式を厳密に解いてエネルギーの正確な値を求めることはできない。

電子間の反発についてもう少し考えてみよう。 例えば、 He の 1s 軌道エネルギーとHe⁺の 1s 軌道エネルギーの違いは電子間の反発によるが、見方を変えれば、ある電子が影響を受ける原子 核の電荷の値が、別の電子によって小さくなることに起因するとも考えられる。同様に、異なる 軌道の電子では、外側にある電子(主量子数 n 大)は、内側にある電子(n 小)によって、あるいは 同じ主量子数の軌道であっても、原子核のより近くに存在する可能性の高い軌道(方位量子数) 小)によって核電荷が遮蔽されてしまう(注10)。1電子原子ではnが同じで1が異なる軌道は 縮退していたが、この遮蔽効果により、多電子原子ではそれらは異なるエネルギー値をとる。 それでは、電子は軌道の中でどのように存在しているのだろうか。まず、電子はエネルギーの低 い軌道から順につまっていく。しかし、ある量子数の組み合わせ(n,l,m)で表される軌道に電子は 2個までしか入ることができない(パウリの排他原理①)。また、電子、陽子、中性子などは、ス ピンと呼ばれる量子力学的な自由度を持っていて、スピンの2つの状態をスピン量子数 s(= ±1/2)で表す(なぜ半整数なのかについては難しいので省略する)。また、スピンはその状態 に対応して2つの方向を持っていて、これを↑↓で表す。1つの軌道に入る2つの電子は異なる スピンの向きをもつ(パウリの排他原理②)。そして、縮退した複数の軌道に複数の電子が配置さ れるとき、電子はなるべく異なる軌道に、スピンの向きを揃えるようにして配置される(フント の規則)。

以上の原理に従って電子が軌道に配置され、これを構成原理という。

なお、最初にスピンが発見されたとき、スピンは電子の自転であると考えられたが、実際はそ のようなイメージは正しくない。電子は、同じ量子数 n,1,m のときにはスピン量子数が異なる。 すなわち、電子は同じ量子数の組(n,l,m,s)をとることができない。また、スピンは電子の磁石と しての性質と関連していて、↑と↓の数が等しくないとき、その原子は常磁性体となる。

〇元素の周期律

2 s 🕂

1s 🕂

B

これまで述べてきたように、原子の中の電子は、均一な性質をもつわけではなく、階層構造を なしている。すなわち、電子は電子殻とよばれるグループを形成している。電子殻はエネルギー の高いものほど外側に位置し、最外殻にある電子(価電子)は他の原子との結合において重要な役 割をもつ。したがって、価電子の配置の仕方は原子の性質と密接に関わっており、同じような価 電子の配列を有する原子は同じような性質を示す。このような理由で、元素の周期律が成立する わけである。

4 s — 4 s — 3 d ____ __ __ __ __ 3 d ____ __ __ __ __ 3 p — — — 3 p ____ ___ 3 s — 3 s — 2 p — — — 2 p — — -2 s — 2 s — 1s 🕇 1 s 🕂 Н He 4 s — 4 s — 3 d ____ __ __ Зр — — — 3 p ____ q £ 3 s — 3 s — 2 p — -2 p — – 2 s 🕂 2 s 🕂 1s 🕂 1s 🕂 Li Be 4 s 🗕 4 s — 4 s — 4 s — 3 d ____ __ __ 3 d ____ __ 3 d ____ __ __ ___ 3 d ____ ___ ___ _ _ _ 3 p ____ ___ 3 p 👝 -3 p ____ ___ Зр — — — 3 s — 3 s 🗕 3 s — 3 s — 2p 🕂 🕇 — 2 p 🕇 -2p 👬 🕂 🕇 2p 🕂 🕇 🕇 2 s 🕂 2 s 🕂

さて、構成原理に従った原子の電子配置は次のようになる:

1 s 🕂

С

1 s 🕂

Ν

2 s 🕂

1 s 🕂

 \cap

同様に、Ar まで電子がつまっていくが、K、Ca では 3d 軌道と 4s 軌道のエネルギーが逆転していることに留意する。この逆転は影響 を受ける核電荷の違いによる。原子軌道に電子がつまっていく様子 は基本的に左のようである。

4 s 🕂	4 s 👫	4 s 🕂
3 d 🕂	3 d 🕂 🕂 — — —	3 d 🕂 🕂 🕂 — —
3p 🕂 🕂 🕂	3p ↑↓ ↑↓ ↑↓	3p 🕂 🕂 🕂
3 s 🕂	3 s 🕂	3 s 🕂
2p 👬 👬	2p 🕂 🕂 🕂	2p 🕂 🕂 🕂
2 s 🕂	2 s 👬	2 s 🕂
1 s 🕂	1 s 👬	1 s 🕂
C.	T :	
20		V

Sc、Ti、V では 3d と 4s のエネルギーが元に戻っている。にもかかわらず高エネルギーの 4s 軌道に電子が占有されているのは、その方が電子間の反発が少なく安定になるからである。

4 s 📫	4 s 🕂	4 s 🕇
3 d 💠 🕂 🕂 🕂	3 d 🕂 🕂 🕇 🕇	3 d 1↓ 1↓ 1↓ 1↓ 1↓
3p 🕂 🕂 🕂	3p 🕂 🕂 🕂	3p 🕂 🕂 🕂
3 s 🕂	3 s 🕂	3 s 🕂
2p 🕂 🕂 🕂	2p 🕂 🕂 🕂	2 p 👬 👬 👬
2 s 🕂	2 s 🕂	2 s 🕂
1 s ↑↓	1 s 👬	1 s 🕂
Cr	Mn	Cu

しかし、V の次の Cr では、4s から電子が引き抜かれて 3d に収容される。これは、4s に2つ、 3d に4つの電子が入るよりも、3d に5つの電子を揃えたほうが安定だからである。その後、 Mn では 4s に電子が入り、以降 3d に入っていくが、同様の理由により Cu では 4s から電子 が引き抜かれる。次の Zn では 4s 軌道が、Ga 以降で 4p 軌道が占有され、Kr で閉殻となる。 K から Kr までの 18 元素からなる周期を長周期という。その後、Rb から Xe までは同様に 5s、 4d、5p 軌道が占有されて同じような周期を形成するが、その次の周期では4f、5f 軌道が占有 される部分があり、その部分に属する元素をそれぞれランタノイド、アクチノイドと呼ぶ。f 軌 道が完全に占有されると価電子としての働きが弱くなり、それ以降はその前の周期の d 軌道が 占有されていく部分の元素と同じような性質を示すようになる。以上のような周期律によって、 元素のイオン化エネルギー、電子親和力、単体の気化熱などの性質が周期的に現れてくるのであ る。

第2章 分子の形成

1. 化学結合とは何か

〇分子軌道法

これまで、原子の電子配置について考察してきたが、今度はその原子同士の結合、特に共有結 合について考えてみよう。化学結合の表現法として、主に分子軌道法と原子価結合法の2つがあ り、まずは分子軌道法について述べる

分子軌道法とは、原子軌道が重なってできた、分子全体に広がる「分子軌道」を用いて分子内の電子の状態を表す方法である。分子軌道は、原子軌道の線形1次結合(LCAO: Linear Combination of Atomic Orbitals)で近似的に求めることができる。

まず、水素分子の形成を考えよう。量子論の立場によれば、電子は波としての性質をもつので、 位相が存在する。軌道が同位相で重なると、互いに強め合って原子間の電子密度が大きくなる。 原子核間に電子がたまるとその電子は両方の電子と強く相互作用できるため、分子のエネルギー は各電子が別々の原子にあって1個の原子核とだけ強く相互作用できる場合のエネルギーより も低くなり、安定化する。このとき、電子は原子同士を結びつける役割をし、そのような軌道を 結合性軌道という。一方、軌道が逆位相で重なると、互いに打ち消しあって原子間の電子密度が 減少し、電子が全く存在できない節が存在することになる。電子は核間領域から排除されるため に主に結合領域の外側に分布する。このため、電子は外側から原子核を引っ張って引き離そうと し、さらに原子核間反発の効果も組み合わさって、各電子が別々の原子にある場合よりもエネル ギー的に不安定になる。このときの軌道を反結合性軌道という。ここで考えたような、原子を結 ぶ軸(結合軸)のまわりに円筒形の対称をもつ分子軌道は軸方向から眺めるとs軌道に似ているの で、sのギリシャ文字である σ を使って、σ 軌道とよぶ。それに対し、結合軸について非対称 な分子軌道は、軸方向からみると p 軌道に似ているので、p のギリシャ文字 π を使って π 軌 道とよぶ。

水素原子は1個の 1s 軌道に1 個の電子をもっている。1s 軌道と 1s 軌道の重なりにより縮 退していた準位が結合性軌道 1 σ (1 σ_g g: 対称 gerade)と反結合性軌道 1 σ *(1 σ_u u: 非対称 ungerade)に分裂する。パウリの排他律により、結合性軌道に2個の電子が入る。結合によっ て全体のエネルギーは2 Δ だけ小さくなり、水素原子として存在するよりも水素分子でいたほ うが得ということになるため、安定な水素分子として存在する。

ここで、結合の安定性を表す値として、<mark>結合次数</mark>というものがある:

結合次数 = 結合性軌道の電子数 – 反結合性軌道の電子数 2

これは、原子間の結合の数を表している。実際、H₂分子の結合次数は、 $\frac{2-0}{2} = 1$ であり、水素原子どうしが単結合していることを示している。

ここで、 H_2 分子は存在するのに対し、 He_2 分子はなぜ存在しないのか、ということについて考えてみよう。 He_2 分子がもし存在するなら、He 原子の 1s 軌道同士が重なってできた σ 結合性軌道と σ 反結合性軌道のどちらにも電子が2つ入ることになる。よって分子であるよりも原子のままの方がエネルギー的に安定となり、 He_2 分子は存在できないわけである。ちなみに He_2 分子の結合次数は、 $\frac{2-2}{2} = 0$ となる。

次に、酸素分子の形成について考えてみよう。酸素原子の電子配置は1s²2s²2p⁴であり、このうち外側にあって結合に関与する軌道は 2s、2p である(ただし 2s も全体としては結合に関与しない)。これらの軌道の重ね合わせを考える:

 $2p_y$ 2 p_y (上) $1\pi_g$ (下) $1\pi_u$ π 軌道は同じものが2個ずつある。このような重ね合わせにより、次のような分子軌道が形成さ れ、電子が入っていく:

(上から $3\sigma_u$ 、 $1\pi_u$ 、 $1\pi_g$ 、 $3\sigma_g$ 、 $2\sigma_u$ 、 $2\sigma_g$ 、 $1\sigma_u$ 、 $1\sigma_g$ 軌道。なおこの軌道の数字は出てくる順番を示すものであり、1s、2s、2pの数字とは関係がない。)

酸素分子の結合次数は $\frac{10-6}{2}$ = 2であり、これは酸素分子が2重結合をなしていることを示す。また、1 π_u 軌道に注目すると、スピンの向きが同じ不対電子が2つある。これは酸素分子が磁気モーメントをもつことを示していて、そのことから酸素の常磁性(液体酸素に磁石を近づけると引き寄せられる)が説明される。ちなみにスーパーオキシド(活性酸素) 0_2 -では、反結合性軌道である1 π_u 軌道に電子がもう1つ入るため、結合は弱くなり、したがって結合距離も 0_2 に比べて長くなる。

〇原子価結合法

分子の形成の様子を考える方法として、次は「原子価結合法」について述べる。電子が分子全体に広がった(非局在化した)分子軌道上に存在することで結合が形成されると考える分子軌道法に対し、原子価結合法では、2つの原子間の結合を、各原子に局在化した原子軌道の重なり合

いによって表現する。

しかし、単なる軌道の重ね合わせだけで考えると問題が生じる。例えばメタンの4本のC-H 結合が等価であることを説明できない。なぜなら、電子が原子軌道に局在化しているならば、炭 素の4つの価電子のうち1つの電子は2s軌道に、残り3つは2p軌道に属することになり等 価でないからである。このようなときは、分子を形成する際に2s軌道と2p軌道が混じり合っ て再分配され、新しい4つの等価な軌道(sp³混成軌道)を生じると考える。この新しく生じた軌 道が<mark>混成軌道</mark>と呼ばれるものである。

 sp^{3} 混成軌道を表す波動関数の組み合わせは上のようになる。1 つの 2s 軌道と3 つの 2p 軌 道の線形結合によって、互いに 109.5°の角度をなす(注11)、原子に局在した4個の軌道を 表現することができる。 $\psi_{1} \sim \psi_{4}$ は2s、 $2p_{x}$ 、 $2p_{y}$ 、 $2p_{z}$ の線形独立(互いで互いを表せない)な組み 合わせである。2s、 $2p_{x}$ 、 $2p_{y}$ 、 $2p_{z}$ の係数をそれぞれ2乗して加えるとどれも1となるが、これ は|波動関数|²が電子の存在確率を表すことを考えると納得できる。

メタン以外の炭化水素の構造について混成軌道を用いて考えてみよう。

エタンの結合は、*sp*³混成軌道を使った C-C 間 の σ 結合(単結合) と、C-H 間の σ 結合によって 表現できる。

どの結合も、結合軸から見れば球になっている から、σ結合である。

炭素原子の3本の等価な結合の手を表現するには、1 つの 2s 軌道と 2 つの 2p 軌道を組み合わせて*sp*²混成軌道をつくると考える。

sp²混成軌道を表す波動関数の組み合わせは上のようになる。1 つの 2s 軌道と 2 つの 2p 軌道の線形結合によって、互いに 120°の角度をなす、原子に局在した 3 個の軌道を表現することができる。これも2s、2 p_x 、2 p_z の係数をそれぞれ2乗して加えると1となる。なお、2p 軌道は2 つ選んでいるので1つ残っている。

は同一平面上に置くことができる(注12)。

エチレンの結合は、*sp*²混成軌道を使ったC-C間、 C-H間のσ結合と、残った 2p軌道を使ったC-C 間のπ結合で表すことができる。

残った 2p 軌道同士の結合は、結合軸からみると p 軌道のようになっているから、π 結合である。 この結合の様式から、エチレン分子の全ての原子

炭素原子の2本の等価な結合の手を表現するには、1 つの 2s 軌道と 1 つの 2p 軌道を組み合わせてsp混成軌道をつくると考える。

sp混成軌道を表す波動関数の組み合わせは上のようになる。1 つの 2s 軌道と 1 つの 2p 軌道の線形結合によって、互いに 180°の角度をなす、原子に局在した 2 個の軌道を表現することが

できる。これも2s、2pzの係数をそれぞれ2乗して加えると1となる。なお、2p 軌道は1つ選んでいるので2つ残っている。

アセチレンの結合は、sp混成軌道を用い た C-C 間、C-H 間のσ結合と、残りの 2p 軌道を用いた2つのπ結合で表すこ とができる。

このように、分子軌道法では電子が分子全体に広がると考えるため、電子を見るのに適してい るのに対し、原子価結合法では電子が原子間に局在化していると考えるため、結合を考えるのに 適している(どちらが正しいというわけではない。要は結合をどのようなモデルで捉えるかであ る)。電子があって軌道ができ、その軌道が分子の骨格を決めていくのである。

そして、この混成軌道の考え方は、上に挙げた分子以外にも様々な分子に適用できる。例えば、 sp^{3} 混成軌道を用いて、オクタン $C_{8}H_{18}$ のような直鎖炭化水素の構造を説明できる。

実際は炭素原子がジグザグに並ん でおり、さらに各原子を隣の原子との 結合の周りにねじることもできる。そ のため、左のような形や右のような形、 あるいはその中間の様々な形をとり

うる。左の方が安定であるが、必ずしもその状態にとどまるわけではない。 また、ベンゼンの環状の分子骨格も*sp*²混成軌道で説明できる。

左のように、それぞれの炭素原子が3つのsp²混成 軌道でC-C間、C-H間の結合をつくり、残ったρ 軌道でC-C間のπ結合をつくる。

ここで、π結合がどのように形成されるかによって、左のよう な2つの共鳴構造が書ける(ケクレの構造式)が、どちらか一方の 状態に固定されているわけではない。π電子は分子全体に非局在 化し、ベンゼンは共鳴混成体とよばれる構造をとっている。この

ような構造は他にも、例えば 1,3-ブタジエンでみることができる:

 $C=C-C=C \Leftrightarrow C \cdot -C=C-C \cdot \Leftrightarrow C^+-C=C-C^- \Leftrightarrow C^--C=C-C^+$

1,3-ブタジエンにおいては、両端に双性イオンの共鳴構造が存在する。ベンゼンや1,3-ブタジ エンにみられるような、二重結合と単結合が交互に連なった結合を共役二重結合という。

これらに代表される共鳴混成体は、共鳴構造をとることでエネルギー的により安定になってい

る。例えば、ベンゼンは二重結合を3本持っており、エチレンは二重結合を1本持っている。そのため単純に考えればベンゼンを水素化してシクロヘキサンにするときの発熱量はエチレンをエタンに水素化するときの発熱量の3倍になると推測される。しかし実測してみるとこの値は予想される値の半分程度しかない。これはベンゼンのπ電子系が孤立したπ電子系よりもエネルギーが低いためと考えられる。1,3-ブタジエンについても同様にして孤立したπ電子系よりもエネルギーが低いことが確認された。アメリカのポーリングは、このような共役π電子系について複数の共鳴構造の寄与があるものと考えて計算を行ない、孤立したπ電子系よりもエネルギーが低くなることを発見し、この余分な安定性が共鳴によるものであることから共鳴エネルギーと呼んだ。

ところで、これらの分子の骨格は原子価結合法で説明できたが、π電子の状態は価電子が原子 に束縛されるとする原子価結合法で記述するのはもはや適切ではなく、分子軌道法で考えなくて はならない。

2. 分子の形

〇炭素化合物の立体異性体

原子同士の相互作用によって分子が形成されていく様子が見えてきたが、分子の構造の違いに よって、化学式が同じ分子でも異なる性質を持つことがある。そのような分子を互いに異性体で あるという。異性体には、炭素骨格、o、m、p、官能基など、結合の仕方が異なることによっ て生じる構造異性体と、結合の仕方は同じであるが構成原子の空間配列のみが異なる立体異性体 がある。

立体異性体はさらに、配座異性体、幾何異性体、鏡像異性体に分類される。配座異性体は単結合 している原子間の回転により生じる異性体であり、ニューマン投影式によって区別する。幾何異 性体はシスートランス異性体ともいい、C-C 間のπ結合の存在、すなわち二重結合による立体 障害(回転できない)によって生じる。これは、例えば人間の網膜に存在する視物質であるロドプ シンにみることができる。

ロドプシン中では、11-シス-レチナールがタンパク質のアミノ基と結合している。そこに可 視光が当たると、レチナールのπ電子が励起され、全トランス-レチナールへ異性化する。する と、周囲のタンパク質の構造が変わり、「光が来た」という情報が伝達される。その後、トラン ス-レチナールは酵素の働きにより 11-シス-レチナールに戻る。

鏡像異性体(エナンチオマー)は、主に不斉炭素原子(結合する4つの原子または原子団が全て 異なるような炭素原子)の存在によって生じる異性体であり、それらは互いに鏡像の関係にあり、 左手と右手の関係に対応するので対掌体ともいう(ちなみに、鏡像の関係にない異性体をジアス テレオマーという)。対掌体はフィッシャーの投影式によって区別する。エナンチオマーの等量 混合物をラセミ体という。エナンチオマーは直線偏光(電場および磁場の向きが一定の光)の向き を変える性質があり、このことを光学活性があるという。機能性生体分子のほとんどはエナンチ オマーを識別するので、2つのエナンチオマーの生理活性は非常に異なるのが普通である。例え ば、サリドマイドの R 体は睡眠薬などに利用されていたが、S 体は催奇性があるため薬品とし ては利用できない。また、L-グルタミン酸は旨味成分であるが、D-グルタミン酸は苦味を呈す る。

3. 分子中の電子

〇結合の極性

異核二原子分子の構造について考えてみよう。

まず、LiH分子の形成について考える。H原子の1s軌道、 Li原子の2s軌道、1s軌道のエネルギーはそれぞれ-13.6eV、 -5.3eV、-67.5eV(1eV ≒ 1.6 × 10⁻¹⁹J)である。軌道同士が 相互作用できる必要条件は、軌道のエネルギー準位が近く、 また軌道が空間的に重なりをもち、かつ結合軸に対して回転 しても同等であることであるから、Hの1s軌道とLiの2s 軌道が相互作用して、Liの1s軌道は非結合性軌道(結合に関 与しない軌道)としてそのまま残る。その結果、左図のような 軌道が形成される。このとき、結合次数は1であり、また新

たな分子軌道は水素原子の軌道に由来する部分が大きいので、水素の方に電気的な偏りがあるといえる。

次に、HF 分子の形成について考える。再び軌道のエネルギ ーを考えると、H 原子の 1s 軌道、F 原子の 2p 軌道、2s 軌道 のエネルギーはそれぞれ-13.6eV、-16.0eV、-25eV である。 したがって、エネルギー準位の近い H の 1s 軌道と F の 2p 軌 道が相互作用して、左図のような軌道が形成される。

1 σ 軌道は F 原子の 1s 軌道に由来するものである。なぜなら、 上図からも分かるように、H 原子の 1s 軌道の方が、F 原子の 1s 軌道よりもはるかに大きなエネルギーをもっている。F 原子 の 1s 軌道は内殻軌道であるから、空間的な広がりが非常に小 さい。結果、水素原子とF原子の1 s 軌道はエネルギー差があり、空間的に重なることもないので、相互作用を及ぼすことはほとんどない。だから、上の図では、F原子の1 s 軌道はそのまま、 HFの1σとして残されているのである。

2σ軌道は、両原子の相互作用によって形成されているものの、ほとんどF原子の2s軌道に 由来するものである。2σ軌道の電子密度のほとんどは、F原子から見てH原子の反対側に存在 するため、結合には寄与しない。

 3σ 軌道は、H原子の 1s 軌道と、F原子の 2s 軌道、 $2p_z$ 軌 道によって形成されている。H原子の 1s 軌道とF原子の $2p_z$ 軌道は互いに強め合うのだが、若干相互作用するF原子 の 2s 軌道との符合が反対であるため、 3σ の結合力への寄 与はあまり大きくない。

1 π 軌道は F 原子由来の 2p_xと 2p_yがそのまま取り残されて残ったものである。2p_xと 2p_yは 軌道の対称性が合わないため、H F 軌道の 1 π 軌道としてそのまま取り残されるのである。これ が、先に述べた「結合軸について回転しても同等」ではないということである。

4σ軌道はH原子の 1s 軌道に由来する、高エネルギー の反結合性軌道である。しかし、電子は収容されていない。 結局、ほとんどの電子はF原子に由来する電子軌道に収め られていることになる。このことから、HF 分子はF原子 側に電気的な偏りをもつことがわかる。

LiH や HF にみられるような電気的偏りを極性といい、共有結合、極性のある共有結合、イオン結合の順に、結合の極性は大きくなる。その極性の大きさを表す尺度として、双極子モーメントというベクトル量を導入する:

 $\mu = eql$ μ :双極子モーメント、e:電気素量、q:部分電荷、l:結合距離

この式を用いて双極子モーメントを求めることは殆どない(誘電分散という現象から実測される)が、部分電荷を求めるのに有効である。双極子モーメントは極性の向き、つまり負電荷から 正電荷に向かう矢印で表される(注13)。

すべての異核2原子分子は、原子間の電気陰性度の差によって部分電荷が生じるため、極性分

子である。Ar やH₂のように、単原子分子や同じ原子からなる2原子分子は、分極していないために双極子モーメントを持たない。また、CCl₄やC₆H₆の様に分子の対称性が高いと、異種原子の結合によって部分的には分極が生じ双極子モーメントが形成されても、全体として打ち消しあうために、分子全体では双極子モーメントを持たない。

第3章 光と分子

1. 光の吸収と放出

〇光、可視光線と電磁波

万有引力を発見したことで有名なニュートンは、光のスペクトルの発見者でもあった。それまでにも可視光線の白色光から色が出ることはわかっていたが、ニュートンは小孔から暗室に入る 白色光をプリズムで屈折させることで、赤、橙、黄、緑、青、藍、紫の7色に分かれることを発 見し、このそれぞれの色の帯をスペクトルと呼ぶことを提唱した(注14)。さらに、この7色の スペクトルを合わせると再び白色光になることも証明した。しかし、ニュートンもこの7色以外 の目に見えない光線があることには気づかなかった。

1800年、イギリスの天文学者ハーシェルは、いろいろな色のフィルターを通して太陽を観察していたところ、フィルターを通る光の量と肌に感じる暖かさとが比例関係になく、わずかの光しか通過していないときでさえ、暖かく感じることがあることに気づいた。色によって運ぶ熱の量が同じでないと推測したハーシェルは、色帯と色帯の外にそれぞれ温度計を置き、同一時間内に室温に比べてスペクトルの各部分での温度上昇がどう違うかを比較した。紫色から赤色の方にいくにつれて上昇の度合いは大きくなった。そして、赤色からはずれた部分にも温度計を置いてみたところ、ここでも室温より温度はかなり高くなることがわかった。そこでハーシェルは、目には見えないが熱を伝える光線が赤色の先にも届いていると結論を下した。

光(電磁波)はエネルギーE = hv(v:振動数)を有する波であり、そのうち目に見える範囲 (λ = 750nm(赤)~380nm(紫)、 ν = 4.0 × 10¹⁴Hz(赤)~7.9 × 10¹⁴Hz(紫)、個人差あり)のものを 可視光線と呼ぶ。可視光線の色は次のように波長によって異なる。

物体がある色に見えるという現象には2つの場合がある。1つ目は物体がその色の光を発している場合、2つ目は物体がその色の補色の光を吸収した結果、吸収されなかった色の光が見える場合である。

光の色は、光の三原色(RGB)の混合で考えられる(加法混色)。光の三原色が太陽光に近い分布 で混合すると白色光となる。

2つ目の場合について解説しよう。左のカラーサー クルの対角線上にある色は、互いに補色の関係にある。 ある物質が、例えば黄色の光を吸収すれば、吸収され ないで透過(あるいは反射)してきた光を見て、私たちは その物質が青色だと感じるわけである。なお、光の吸 収という現象については(注15)。

〇黒体輻射、原子の発光と吸収

1つ目の、物体がある色の光を発する場合について解説しよう。実は、物体が光すなわち電磁 波を発する現象には2通りあり、1つが第1章でも述べた黒体輻射、もう1つが電子の軌道遷移 によるものである。

電子の軌道遷移による発光は、例えば炎色反応にみることができる。炎中の高いエネルギー分子に衝突して励起状態(エネルギー準位が元より高い状態)になった原子が、安定な基底状態に落ちるときに、その元素特有の軌道のエネルギー間隔に応じたエネルギーを光として放出する。

炎色反応に関連した面白い現象がある。ナトリウムランプに非常に近い場所でナトリウムの炎 色反応を観察すると、特に外炎部が黒く見えるというものである。この現象が起こる理由は次の ようである。ナトリウムイオンを火の中に入れて炎色反応を起こしても、その炎の外側では比較 的温度が低く、光の放出があまり起こらない。そこに、ナトリウムが吸収しやすい波長の光を出 すナトリウムランプを当てることで、炎の外側では放出量以上に光を吸収するようになり、相対 的に暗くなったように見えるというわけである。

これと同様の原理で発生するのが、フラウンホーファー線と呼ばれる暗線である。ドイツのフ ラウンホーファーは、太陽光のスペクトル中に多数の暗線が現れることを発見し、570 を超え る暗線について波長を測定、系統的な研究を行った。主要な線に A から K の記号をつけ、弱い 線については別の記号をつけた。その結果、それぞれの線が、太陽の上層に存在するいろいろな 元素や地球の大気中の酸素などによって吸収されたスペクトルであることがわかった。特に有名 なのは D 線で、589nm の橙色の光に相当する暗線である。これは太陽大気中のナトリウム蒸 気による電磁波の吸収に起因する。主なフラウンホーファー線の波長と原因元素を次に示す:

名称	波長(nm)	原因	名称	波長	原因
А	759.37	O2 地球大気中	E	526.956	Fe
В	686.995	O ₂ 地球大気中	F	486.134	Н
С	656.282	Н	G	430.791	Fe,Ca⁺
D ₁	589.594	Na	Н	396.849	Ca⁺
D ₂	588.998	Na	L	382.044	Fe

ここで、C線とF線は水素のバルマー系列である。このように、吸収する光の波長は元素によって異なるので、フラウンホーファー線を利用することで太陽大気中の構成元素の濃度がわかる。

〇有機物の色 $\pi - \pi^*$ 遷移

染料や色素などに代表されるように有機化合物には着色したものが多く存在する。 これらの 色がどのようにして生じるのかを考えてみよう。

有機化合物には、二重結合が一つおきに連なった共役二重結合を持ったものが多く存在する。この共役系が吸収する光の波長と強度に大きな関わりを持っている。以下に、共役ポリエンH(HC = CH)_nHが吸収する光のピーク波長を示す:

n	化合物	波長(nm)	n	化合物	波長
1	エチレン	165	6	ドデカヘキサエン	364
2	ブタジエン	217	7	テトラデカヘプタエン	390
З	ヘキサトリエン	268	8	ヘキサデカオクタエン	410
4	オクタテトラエン	304			
5	デカペンタエン	334	10	エイコサデカエン	450

このデータから、共役系が大きくなるほどピーク波長は長波長側にシフトすることが分かる。 この理由を光のエネルギーと電子の運動との関係で考えてみよう。

光は波と粒子(光子)の二つの性質を持ち、1個の光子のもつエネルギーは $E = hv = \frac{hc}{\lambda}$ で表される(h:プランク定数、v:振動数、c:光速、 λ :波長)。可視光の吸収は電子の遷移に関係している。共役系の π 電子は分子の骨格を形づくっている σ 結合の電子より非局在化しやすい、すなわち広範囲に存在しやすい性質をもつ。このような π 電子に光子が衝突すると、エネルギーの小さい光子であっても、 π 電子は簡単にエネルギーを吸収して励起状態に遷移する。さらに、共役系が大きくなればなるほど π 電子は小さなエネルギーの光子の影響を受けやすくなる。光子のエネルギーが小さいということは $\frac{hc}{\lambda}$ が小さいということ、つまり吸収する光の波長 λ が大きいことを意味している。したがって、共役系が伸びるにつれて長波長側にピークが現れることになる。

この性質が顕著にみられるのがフェノールフタレインの呈色である。

pHO~8.2(無色)

pH8.2~12.0(赤色)

pH12.0~(無色)

酸性〜弱塩基性溶液中では、共役系が短く吸収光は不可視光であるが、塩基性溶液中では構造が 変化して共役系が分子全体に広がり、緑色の可視光を吸収するため赤色に呈色する。さらに強塩 基性になると、再び構造が変化して共役系が短くなり、無色となる。

〇遷移元素化合物の色 d-d 遷移

遷移元素化合物の発色の主な原因の1つとして、d 軌道の分裂が挙げられる。d 軌道には d_{xy} 軌道、 d_{yz} 軌道、 d_{zx} 軌道、 d_{x}^{2} , y^{2} 軌道、 d_{z}^{2} 軌道という5つの異なる配位の軌道があり、通常こ れらは縮退(同じエネルギー準位をとる)している。しかし、遷移金属錯体で見られるように、 O^{2-} やOH-などの配位子が遷移金属イオンの周りに配位すると、配位子による静電場の影響でd 軌道の縮退が解け、配位の様式に応じて軌道準位が分裂する(配位子場分裂)。例えば6個の配位 子が正八面体状に配位した場合、3重に縮退した t_{2g} 軌道と、2重に縮退した e_{g} 軌道に分裂する。

配位子の方向に電子の存在確率が高い $d_x^2 - y^2$ 軌道、 d_z^2 軌道は配位子による静電反発のため、軌道のエネルギ ーが押し上げられ、2 重に縮退した e_g 軌道になる。ま た、配位子の方向に電子の存在確率が低い d_x 軌道、 d_{yz} 軌道、 d_{zx} 軌道はエネルギーが低く、3 重に縮退し た t_{2g} 軌道になる。 e_g 軌道に空きがある場合、分裂幅に 応じた光を吸収することにより、 t_{2g} 軌道の電子は e_g 軌道に遷移し、人間の目には吸収される光の波長の補 色にあたる色が見える。吸収される光の波長は中心の

遷移金属や配位子の種類によって異なる。例えば、塩化コバルト(III)(Co(H₂O)₆CI)は鮮やかなピ ンク色をしている。

このように、d 軌道の縮退が解けてエネルギー準位に差ができることで、d 軌道の中で電子が 励起(d-d 遷移)して発色すると考えられる。一方、錯体における電子遷移について、配位子から 中心金属へ、あるいは中心金属から配位子へなど、異なる原子間での電子移動を伴う遷移(CT 遷移)を考えることもある。

2. 分子を測る

〇分子スペクトル

分子のスペクトルは、原子のスペクトル(例えば水素原子のスペクトル)と違い、線ではなく広 がったバンド構造をもつ。この理由について考えてみよう。

まず、吸収スペクトルについて考える。(ここで吸収スペクトルとは、刺激として電磁波を用 い、波長に対し吸収強度を記録したものである。)分子内では通常、電子基底状態から電子励起 状態への遷移が起こり、それが吸収スペクトルとして観測される。しかし、分子内において、電 子のエネルギーは軌道ごとに固定されているわけではない。分子は振動、回転をしていて、結合 は伸び縮みし、また結合角も変化している。電子励起状態には多数の振動励起状態や回転励起状 態があり、それぞれの組み合わせにより「電子基底・振動・回転基底状態」からの遷移確率が変 わる。そのため、吸収は多くの種類の「電子励起・振動・回転励起」状態への遷移の集まりにな り、スペクトルが幅を持つようになる。発光スペクトルでも原理は同じである。

では、まず分子の振動について考えてみよう。二原子分子において、結合している原子の運動

は2つの粒子の調和振動子(理想的なバネにつながれた物体の運動)によって近似される。よって 振動はフックの法則に従い、振動による分子のポテンシャルエネルギーは、バネの変位をxとし て、U = $\frac{1}{2}kx^2$ + C と表される(C は x によらない定数)。これはx = 0において極小となる2次関 数である。さらに、この近似のもとで、分子の振動によるエネルギーは次式で表される:

$$E_{v} = hv\left(v + \frac{1}{2}\right)$$
 $v = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$: 振動数、 v : 振動の量子数

ここで、*k* は力の定数、μは換算質量である。この式から、分子の振動も電子の運動と同様に量 子化されていることがわかる。結合次数が大きくなるほど *k* は大きくなるが、これは結合次数が 大きいほうが原子間の引き合う力が強いことを考えると納得できる。

振動によるエネルギーには、等間隔hvで準位が存在し、それらの間で振動が遷移する際にはい くつか規則(選択律)がある。後で詳しく述べるが、赤外光吸収による遷移の場合には①振動量子 数の変位 $\Delta v = \pm 1$ であること、②振動による双極子の変位がOでないこと、の2つが必要であり、 ラマン効果による遷移の場合には①振動量子数の変位 $\Delta v = \pm 1$ であること、②振動による分極率 の変化がOでないこと、の2つが必要となる。(注16)

分子の振動遷移の観測方法には、主に赤外線(IR)吸収スペクトルの観測とラマン散乱光の観測 の2つがある。前者は分子の振動の速さが波長 3~30 μ m の赤外光に対応していることを利用 するもので、振動による双極子の変位がOでないときに観測される。等核二原子分子では双極子 が変化せず、振動状態が遷移しないので IR 吸収スペクトルは観測されない。また、通常はv = 0の 状態からv = 1の状態への光の吸収が観測される。

後者は、物質に光を入射したとき、散乱された光の中に入射された光の波長と異なる波長の光 が含まれる、ラマン効果と呼ばれる現象を利用するものである。ラマン散乱光は下の図のように、 レイリー散乱光(光の波長より小さいサイズの粒子による散乱光)から振動エネルギー分ずれた 散乱光として観測でき、現代では、光源として単色光であるレーザー光を物質に照射し、発生し た散乱光を分光器もしくは干渉計で検出することでラマンスペクトルを得ることができる。入射 光・ラマン散乱光の2個の光子により、振動準位が中間状態を経由して変化する。このうち、 振動基底状態から振動励起状態への遷移がストークス成分、振動励起状態から振動基底状態への 遷移が反ストークス成分となる。このことから、ラマン散乱のストークス・反ストークス成分の 強度比は物質が各々の振動基底状態、振動励起状態をとる確率の比を反映することになる。

下図はポリスチレンフィルムの IR 吸収スペクトルである。3100-3000 cm⁻¹ の吸収帯はベ ンゼン環の C-H 伸縮振動、3000-2800 cm⁻¹ の吸収帯はメチレンの C-H 伸縮振動による ものである。

このように、赤外線の吸収される波長は、分子の官能基(金属錯体の場合は配位子)にほぼ固有な ので、測定対象分子に含まれる官能基の同定に利用できる。特にヒドロキシ基、カルボニル基、 ニトロ基などは強い吸収を示すので、ニトロ化合物、ケトン、アルデヒド、カルボン酸、カルボ ン酸誘導体、アルコール、フェノール類の定性は容易である。また、特に1300~650 cm⁻¹の 領域(指紋領域と呼ぶ)には細かい吸収が多数みられ、そのパターンは物質に固有のものである。 したがって、この領域の吸収を既知のスペクトルデータベース等と照合することで、その物質を 同定することが可能である。

また、前頁下図は四塩化炭素のラマンスペクトルを示したものである。縦軸の入射光の波長のそれぞれのピークが特定の分子振動に対応しており、横軸のラマンシフト(ラマン散乱光の振動数と入射光の振動数の差)の値から分子に固有の振動数を測定することで、分子の構造や状態を分析することができる。

IR 吸収とラマン散乱は、どちらも分子の振動時に光を吸収(あるいは透過)したり散乱したりす るものだが、IR 吸収は、分子振動に伴って双極子モーメントが変化する場合に生じ、ラマン効 果は分子の振動により分極率(電荷の分布)が変化する場合に観測される(分極率については第5 章で再び述べる)。前者を赤外活性、後者をラマン活性といい、両者は観測される条件(選択律) が異なるので相補的な関係にある。特に、対称心をもつ分子では IR 吸収とラマン効果で観測さ れる振動は互いに異なる(交互禁制)。つまり、一方が活性ならもう一方は不活性であるというこ

メントの変化、分極率の変化を伴うので IR 活性かつラマン活性である。

縮重変角振動

逆対称伸縮振動

また、上図はXY₂直線分子の振動である。全対称伸縮振動では、双極子モーメントが変化しない が分極率は変化するので、IR 不活性・ラマン活性となる。一方、縮重変角振動と逆対称伸縮振 動では、双極子モーメントは変化するが分極率は変化しないので、IR 活性・ラマン不活性とな る。

ここまで分子の振動を考えてきたが、次は分子の回転について考えてみよう。二原子分子の回転運動は、2質点の距離が固定された剛体の回転とみなせ、そのエネルギーは、

 $E_J = hBJ(J + 1)$ J = 0,1,2,3, ...

$$B = \frac{h}{8\pi^2 \mu r^2}$$
:回転定数 $\mu = \frac{m_1 m_2}{m_1 + m_2}$:換算質量

と表される。rは2原子間の距離、m₁,m₂はそれぞれの原子の質量である。この式から、分子の回転エネルギーも量子化されていることがわかる。回転エネルギー準位の間隔は

$$E_{I+1} - E_I = 2hB(J+1)$$

である。回転スペクトルの観測では、Jの1つ異なる状態間の光の吸収が観測されるので、波数

$$\tilde{v} = \frac{1}{v} = \frac{E}{h}$$

の関係を用いると、回転スペクトルの間隔は、

全対称伸縮振動

$$\Delta \tilde{v} = \frac{2hB(J+1) - 2hBJ}{h} = 2B$$

となる。Bは分子に固有の量であるので、二原子分子の回転スペクトルは等間隔 2B で並ぶ。なお、多原子分子になると回転スペクトルは複雑になる。

さて、ここまで分子の振動と回転について別々に考えてきたが、実際には両者は同時に起こっていて、振動遷移が起こる際には回転状態も同時に変化している。

なお、分子の回転スベクトルは、分子の配列がある程度固定されている液体や固体では観測されない。また、等核二原子分子など極性をもたない分子では、回転しても分子全体として等価であるため、やはり回転スペクトルは観測されない。

ところで、以上で述べてきたことから、微量のCO₂やCH₄が温室効果ガスとして問題にされる のに、大量に存在するN₂やO₂がなぜ問題にされないのか、という疑問に対して1つの答えが与 えられる。すなわち、N₂やO₂などの等核二原子分子は、振動しても双極子モーメントが変化し ないので赤外線を吸収せず、温室効果はゼロといえる。対して、極性の共有結合を持つCO₂やCH₄ は効率的に赤外線を吸収する、というわけである。ただ、CO₂やCH₄の温暖化効果の大きさを表 す温暖化係数は小さく、本当にそれらが温暖化に影響しているかどうかは推測の域を出ない。

〇分子スペクトルの応用

分子スペクトルの値は、それぞれの構造に固有な情報を反映しているため、新しい分子の同定 や、分子構造の決定に用いられている。特に、星間分子には地上にありふれた分子ばかりでなく、 地上では反応性が高く不安定なため存在できない分子も数多く存在する。

今日までの星間化学の研究の進展においては、主に電波領域に現れる、分子の回転遷移のスペ クトル観測が重要な役割を果たしてきた。実際、これまでに見つかった星間分子のうち、赤外線 領域の振動スペクトルのみによって検出された分子種は全体の1割未満である。分子は、高いエ ネルギーの回転状態から低いエネルギー準位に電波を出して遷移する。このときに分子が出す電 波は極めて微弱であるが、大きなパラボラアンテナを用いて宇宙から電波を集めることで観測が 可能となる。このように電波観測を利用して天体を研究する学問を電波天文学といい、周波数を 精密に測ることでドップラー効果の関係から雲の運動の様子をみたり、宇宙空間で進行する特異な化学反応を観測したりすることができる。

第4章 化学反応

1. 光反応

これまで、個々の原子や分子のようすに着目してきたが、ここからは化学反応のようすを見ていこう。光の関与する反応(注17)の例として、オゾン層破壊問題で有名な成層圏でのオゾンの生成・分解・再生・消失サイクル(Chapman Cycle)をとりあげる。

1)オゾンの生成

まず、高度30km以上の成層圏で242nmより短い波長の紫外光により酸素が解離する。

$$O_2 + h\nu(\lambda < 242\text{nm}) \to 0 + 0 \tag{1}$$

生成した酸素原子はただちに酸素分子と反応してオゾンを生じる。

$$0 + O_2 + M \to O_3 + M \tag{2}$$

ここで M は第3体(媒介,ミディエーター)と呼ばれ、生成した03の内部エネルギーを奪い、安定 化する役割を担う。(この反応では酸素または窒素が第3体となる。)

2)オゾンの光分解と再生

オゾンは240~320nmの紫外光により解離する。人体に有害な紫外線を吸収する反応である。

$$O_3 + h\nu (\lambda = 240 \sim 320 \text{nm}) \to O_2 + 0$$
 (3)

この反応で生成した酸素原子は(2)式の反応によりオゾンを再生させる。このため、紫外光によるオゾン分解はオゾン濃度を減少させない。

3)オゾンの消失

酸素原子との反応によりオゾンが消失し、酸素へと変化する。

$$0 + \theta_3 \to \theta_2 + \theta_2 \tag{4}$$

以上の(1)~(4)式により成層圏のオゾン濃度が一定に保たれていると考えられていたが、実際は フロンガスによる*clo_x*サイクル、排ガスによる*NO_x*サイクルにより、より多くのオゾンが消失し ている。(オゾン層破壊問題)

化学的に安定で無毒・不燃性のフロンガスは(5)式により塩素を発生させ、*ClO_x*サイクル((6)~(8)式)を促進させる。

$$CCl_2F_2 \to CClF_2 + Cl \tag{5}$$

$$Cl + O_3 \to ClO + O_2 \tag{6}$$

$$Cl0 + 0 \to Cl + O_2 \tag{7}$$

$$(6)(7)$$
式をあわせて $0 + 0_3 \rightarrow 0_2 + 0_2$ (8)

CI は水溶性の HCI 等に変化し成層圏から消失するが、この反応が遅いため、成層圏にある間に CI 原子ひとつで約 10 万個もの03を破壊する。オゾン層が破壊されることで有害な紫外線が地 表まで届き、核酸塩基の互変異性を起こして遺伝子に深刻な障害を与える。

〇反応速度式

先に示した Chapman Cycle を反応速度式で記述し、定量的に扱うことを考えよう。

$$A + B \rightarrow C + D$$

の反応において、反応速度 v は、各成分の物質量の時間変化、すなわち濃度のべき関数で表される:

$$v = \frac{\mathrm{d}[\mathrm{C}]}{\mathrm{d}\mathrm{t}} = k[A][B]$$

kは係数であり、各成分(この場合は C)が増加する場合には正、減少する場合には負となる。なお、このように表されることの詳細については(注18)。これを用いて、(1)~(4)式の反応速度を表すと次のようになる:

	反応式	d[0] dt	$\frac{\mathrm{d}[O_3]}{\mathrm{dt}}$
(1)	$O_2 + h\nu \rightarrow 0 + 0$	$2j_1[0_2]$	
(2)	$0 + O_2 + M \rightarrow O_3 + M$	$-k_2[0][0_2][M]$	$k_2[0][0_2][M]$
(S)	$O_3 + h\nu \rightarrow O_2 + O$	$j_3[0_3]$	$-j_3[O_3]$
(4)	$0 + O_3 \rightarrow O_2 + O_2$	$-k_4[0][0_3]$	$-k_4[0][0_3]$

これより、サイクル全体での〇原子濃度の時間変化、オゾン濃度の時間変化は、

$$\frac{d[0]}{dt} = 2j_1[0_2] + j_3[0_3] - [0](k_2[0_2][M] + k_4[0_3])$$
$$\frac{d[0_3]}{dt} = k_2[0][0_2][M] - j_3[0_3] - k_4[0][0_3]$$

となる。

ここで、O 原子とオゾンはあくまで反応の途中に現れる化学種であるから、その濃度の時間変化はゼロであると考えられる。つまり、

$$\frac{d[0]}{dt} = 0 \succeq \cup \subset \qquad [0] = \frac{2j_1[0_2] + j_3[0_3]}{k_2[0_2][M] + k_4[0_3]}$$
$$\frac{d[0_3]}{dt} = 0 \succeq \cup \subset \qquad [0_3] = \frac{k_2[0][0_2][M]}{j_3 + k_4[0]}$$

が導かれる。このように、反応の途中に現れる活性種や、あるいは極めて量の少ない化学種については、その濃度の時間変化がゼロであると考えられ、これを定常状態近似という。

ただし、上で得られた[0]を[0₃]の式に代入するとかなり複雑な式となる。このような場合は、 実測値を用いるなどして適当な近似を行うことがある。実際、

$$[0] \approx \frac{j_3[O_3]}{k_2[O_2][M]}$$
$$[O_3] \approx [O_2] \left(\frac{j_1k_2}{i_2k_4}[M]\right)^{\frac{1}{2}}$$

と近似することができる。さらに、ここで求めた O 原子濃度の近似式から、次の関係が導かれる:

$$k_2[O_2][M][0] = j_3[O_3]$$

これは、(2)式と(3)式の 2 つの過程の反応速度はほとんど等しい、つまり光分解されたオゾンはすぐに再生されることを意味している。

ただし、より厳密な計算を行うと、Chapman Cycle で説明できるオゾンの消失量は実際の 20%程度であることがわかる。そこで、先程も述べた、*ClO_x*サイクルや*NO_x*サイクルの影響も 考慮する必要がある。

○反応速度と活性化エネルギー

ここまで、化学反応A+B→C+Dの進行速度を反応速度式

$$\mathbf{v} = \frac{\mathbf{d}[\mathbf{C}]}{\mathbf{d}\mathbf{t}} = k[A][B]$$

で表すことを考えた。この右辺の k(反応速度係数)について考えてみよう。

そもそも、反応が起こるためには、分子同士が衝突しなければならない。しかし、衝突した分 子の全てが反応するわけではない。反応物と生成物のエネルギーに差がある場合、最低限そのエ ネルギー差に相当するエネルギーを外部から受け取らなければならないが、実際の反応において はそれだけでは十分でなく、反応物の結合を切断して新たな結合を形成するために、二状態のエ ネルギー差以上のエネルギーを必要とする場合が殆どである。大きなエネルギーを受け取ること で、反応物は生成物のエネルギーよりも大きなエネルギーを持った活性化状態となり、その後エ ネルギーを放出しながら生成物へと変換する。

反応物を活性化状態にするのに必要な最小限のエネルギーを活性化エネルギーという。反応が 起こるためには、分子が活性化エネルギー以上のエネルギーをもって衝突しなければならない。 これは発熱反応の場合にも当てはまり、たとえ反応物よりも生成物のエネルギーの方が低いとし ても、活性化エネルギーの壁(活性化障壁)を越えられなければ反応は進行しない。

多くの場合、反応速度は温度と共に増加する。これは、温度が高くなると大きな運動エネルギーをもった分子の数が増大し、衝突する分子のエネルギーが活性化エネルギーを超えることが多くなるからである。実際、反応速度定数 k が温度 T の関数

$$k = Ae^{-\frac{La}{RT}}$$

で表されることが、経験則によって明らかにされている。ここで、A は前指数因子または頻度因

子とよばれる、温度に無関係な定数であり、*E*_aは活性化エネルギーである。この式は、これを 提唱した科学者の名から、アレニウスの式と呼ばれる。アレニウスの式は次のように変形できる:

$$\ln \mathbf{k} = \ln \mathbf{A} - \frac{E_a}{R} \left(\frac{1}{T}\right)$$

この式から、 $\ln k \ge \frac{1}{r}$ が直線関係にあることがわかり、したがって、温度 T とその温度における k を求め、 $\ln k \ge \frac{1}{r}$ をグラフにプロット(アレニウス・プロット)すれば、その直線の傾きから反応 の活性化エネルギー E_a を求めることができる。

アレニウスの式が成り立つ理由と、それの持つ意味について考えてみよう。上で述べたことか ら、反応速度は反応物である化学種の衝突に依存するわけだから、

衝突頻度 ∝ [A][B] ...

この衝突のうち、活性化エネルギー以上の運動エネルギーを持って接近した分子が反応するとす れば、そのような分子の割合 f はボルツマン分布(後述)に従うので、

$$f = e^{-\frac{E_a}{RT}}$$

となる。よって、反応速度について

$$k[A][B] \dots \propto e^{-\frac{E_a}{RT}}[A][B]$$
$$\therefore k \propto e^{-\frac{E_a}{RT}}$$

が成り立ち、比例定数をAとするとアレニウスの式に一致する。そうすると、Aは反応物の濃度と衝突頻度を結ぶ比例定数、*E*aは反応を起こす衝突に必要な最低のエネルギー、すなわち活性化エネルギーを表すことになる。

マクスウェル分布とは、分子の速度(あるいはエネルギー、横軸) と分子の割合(縦軸)の関係を表したものである。左図はマクスウェル 分布の温度変化を表している。温度 T において、あるエネルギー E_a 以 上で衝突する分子の割合は $e^{-\frac{E_a}{RT}}$ に比例する。

ところで、実測される A の値Areal は、理論上導かれる A の値よりも 小さいことが多い。これは衝突する際の分子の配向によるとされ、 Areal はこれを補正する因子 P(立体因子)を含み、分子の衝突頻度と P の積で表される(注19)。つまり、分子同士はただ衝突すればよいの ではなく、反応がうまく起こるような方向から衝突しなければなら ないということである。以上をまとめると、反応速度は、分子同士

が「反応がうまく起こるような方向から」「*E_a*以上のエネルギーをもって」衝突する確率に比例 する。

2. 結合の切り替え

〇活性錯合体理論

ここまで、化学反応を分子の衝突という観点から考えてきた(衝突理論)が、実はもう一つ、活性 錯合体理論という、反応機構についての主な理論がある。どちらも、反応が起こるためには反応

物がエネルギー的に高い状態を超えなければならないとしている点 では同じであるが、この理論では、ポテンシャルエネルギーの極大 点で反応物は活性錯合体という原子の集合を形成していると考える。 活性錯合体は、ほんの少しの変形で、生成物に進むか、反応物に戻 るかする極めて不安定なものであり、取り出すことは基本的に不可 能で、フェムト秒化学(後述)以外の手法では解析できないものとされ る。このような状態は遷移状態とも呼ばれる。この理論を用いて、 化学反応に伴う結合の切り替えについて考えてみよう。次の反応を 考える:

$$F^- + CH_3Cl \rightarrow CH_3F + Cl^-$$

まず、過剰の電子をもつF⁻は電子を渡す相手を求め、電子の詰まった2p_z軌道を使ってCH₃Clを 攻撃する。このとき、CH₃Clの軌道のうち、電子の詰まっているものはそれ以上電子を受け入れ ることができないので攻撃されず、電子の詰まっていない軌道が攻撃の対象となる(求核反応)。

反応が背面から始まるのは、攻撃する側とされる側の軌道の対称性が合致するようにするためで、 これにより分子は求核剤(侵入してくる基)と脱離基(離れていく基)が同軸方向にある三方両錘型 の活性錯合体(遷移状態)となり、ここから脱離基が抜けることで反応が終了する。このため生成 物の立体配置(CH₃の傘)は反転し、このことをワルデン反転という。ちなみに、このように軌道 が重なり合って反応が起こるとするのが、故福井謙一博士のフロンティア理論である。

それぞれの状態における電子状態をもう少し詳しく見てみよう。

反応系F⁻ + CH₃Clの電子状態は上のようになっている。電子の詰まったF⁻の 2p 軌道(HOMO、 上段)がCH₃Clの背面にある非占有軌道(LUMO、下段)を攻撃しようとしている。このように2つ の分子が離れているときは、まだ別々の軌道をとっている。

活性錯合体(遷移状態)の電子状態は上図のようになっている。分子同士が近づくとだんだん相互 作用が強くなり、HOMO(上段)および HOMO に近い分子軌道(下段)が、Fの 2p軌道と CIの 3p軌道から構成されるようになる。

生成系 $CH_3F + Cl^-$ の電子状態は上のようになっている。遷移状態から Cl^- が脱離し、 CH_3 の傘が反転している。 CH_3 の背面に LUMO が生じ、電子の詰まった Cl^- の 3p 軌道が HOMO(上段)を形成している。

この反応のエネルギー変遷は左のようになる(縦軸が ポテンシャルエネルギー、横軸が反応経路)。確かに、 エネルギーの高い活性化状態を経て反応物が生成物へ と変化していることがわかる。

このエネルギー変遷を3次元的に描いたものが左の上図であり、 反応の遷移状態を表現する原子配置とポテンシャルエネルギーの 関係を表すポテンシャルエネルギー曲面とよばれる。中図は反応 のポテンシャルエネルギーの等高線である。下図は反応経路に沿 ってポテンシャルエネルギーの変化の様子を描いたもので、反応 プロフィールと呼ばれる。活性錯合体では結合あるいは脱離する 分子(または原子)間の距離は様々に変化するが、その距離の変化に 応じて、様々なポテンシャルエネルギーの値をとる。左図の曲面 において、化学反応は原系から生成系へとポテンシャルエネルギ ーが局所的に最小となる経路を通過する。この反応が通るポテン シャルエネルギー曲面の経路が反応座標であり、活性錯合体は「反 応座標におけるポテンシャルエネルギーの極大点の状態」を指す。

反応途中に形成される活性錯合体(中間体)の構造を考えることによって、置換基が付加したベンゼンの配向性を理解することができる。ニトロベンゼンに求電子試剤が作用する反応を考えよう。次頁にその反応機構を示す。[]で囲まれた部分が中間体である。

生じうる中間体のうち、一番上の右端のものと、上から2番目の真ん中のものは、正電荷が隣り 合うような共鳴構造をとっており、不安定である。しかし、求電子試剤がベンゼン環のメタ位を 攻撃した場合、そのような不安定な構造の中間体が生じない。したがって、ニトロベンゼンはメ タ配向性となり、メタ位に新たな置換基が結合した化合物が生成しやすくなるのである。(なお、 配向性については分子軌道を加味して考えることでより詳しく説明できるが、複雑になるので省 略する。) このように、中間体の安定性が、反応経路と最終的な生成物を決定するわけである。

以上、ポテンシャルエネルギーの変遷と共に反応が進行していく様子を見てきたが、活性錯合 体は少しの変形で反応物に戻ったり生成物へ進んだりする極めて不安定なものであり、実際の反 応はフェムト秒(10⁻¹⁵秒)の時間スケールで進行している。この非常に短い時間における化学反 応過程を対象とした研究分野がフェムト秒化学である。1999年にアハメット・ズヴェイルは、 この分野における先駆的な研究でノーベル化学賞を受賞している。ズヴェイルの開発した方法で は、数フェムト秒程度の超短パルスレーザーを用いる。これにより、特定の化学反応がなぜ起こ りやすいかを調べたり、反応前後の化合物のみからは推測できない、反応中間体の詳細を明らか にすることが可能となる。一方、同じ手法に基づいた反応制御の可能性に関する研究報告が多く あるが、いまだ議論の余地がある。

3. 変化の方向

〇自発変化とエントロピー

ここでは、原子や分子そのものではなく、「系の無秩序性」という観点から反応を捉える。 化学変化にはエネルギー収支がつきものである。熱力学的な状態量として、

H = U + PV U:内部エネルギー P:圧力 V:体積 で表される量 H(エンタルピー)を考えると、(可逆的な)定圧下において、エンタルピー変化 Δ H は

$\Delta H = \Delta U + P \Delta V$

となり、これは内部エネルギーの変化と膨張による外部への仕事の和、つまり系に与えられた熱 エネルギーの量(熱量)に等しい。しかしもちろん、反応は系のエンタルピーが減少する方向へ向 かうわけではない。もしそうなら、エネルギーの坂を登る吸熱反応は自発的に進行しないことに なってしまうからである。

では、真に反応の方向を決めているものは何だろうか。結論から言うと、それは系の無秩序性、 乱雑性である。たとえば、次の吸熱反応

 $Ba(OH)_2 \cdot 8H_2O + 2NH_4NO_3 \rightarrow Ba(NO_3)_2 + 2NH_3 + 10H_2O - 9.65[kcal]$ では、水和水が遊離し、それに硝酸バリウムが溶けるときに溶解熱が奪われている。このとき、 外界ではエネルギーが失われて乱雑さが減少しているが、それ以上に溶液内では溶解によって系の乱雑さが増しているため、全体としては差し引きで乱雑さが増していることになる。したがってこの反応は確かに→の方向に向かって進むのである。

このように、自発変化は、運動が乱雑になる方向に、すなわち物質あるいはエネルギーが散逸

する方向に進む。実際、気体分子はそれぞれ、位置に関して 最大確率をもつ配置、つまり単位体積あたりの分子数が等し くなる方向に向かって自発的に拡散するし、また物体が冷え

この規律は、先に取り上げた分子の速度分布(マクスウェル分布)にも確かに表れている。この ことを示すため、3個の粒子に9個(3個×3次元)のエネルギー量子を分配する簡単なモデルを 考える。それぞれの粒子に分配されるエネルギー量子の数の組(n_1, n_2, n_3)としてありうるものを 書き出し、各分配数の現れる回数を数えていくと、分配数 0,1,2,…の順に出現回数が減少してい く。なお、この場合では出現確率の減少は直線的であるが、粒子の数が4個、5個、6個…と 増えていくに従い、減少は指数関数的なものになる(注20)。ここで、粒子へのエネルギー配分 の仕方(n_1, n_2, n_3)はすべて等確率で起こり(等分配の法則)、エネルギーが自発的に無作為にばら まかれている(最も乱雑な配分)ことに注目したい。

これらの粒子の集団が、分配されたエネルギー量子の数に見 合った速度をもって3次元空間を運動しているときの速度分布 は、出現確率に4πu²(uは速度)をかけることによって求められ、 これをグラフにプロットしていくと左のような分布(マクスウ ェル分布)が得られる。なお、温度が高くなるとそれだけ分子の 速度 u も上昇するので、グラフの極大位置は高速度の方へずれ ていく。

ここで、物質や熱の拡散の程度を表す尺度として、エントロピーという状態量を導入しよう。 いま温度 T の系があり、外界から系に微小熱量 dq を可逆的に加える。系がこの熱量 dq を受け 取ったとき、^{dq}だけ変化する量があり、これを系のエントロピー変化といい記号 dS で表す。さ らに定圧下では、系が受け取る熱量はエンタルピーの変化に等しいので、

$$dS = \frac{dq}{T} = \frac{dH}{T}$$
$$\therefore \Delta S = \frac{H}{T} (J/K)$$

が成り立つ。なお、エントロピーが状態量であることは、ある状態から出発してその状態に戻る サイクル変化を行ったとき、サイクル変化の積分の値が0となることから納得できる(詳細は熱 力学で)。

この式は次のように解釈できる。系から外界へ同じ熱量が拡散しても、温度によって外界のエントロピーの変化量は異なる。外界の温度が高いときには、外界は既にかなり無秩序であるから、 系からの熱拡散は外界をより無秩序にするためにあまり貢献せず、外界のエントロピーの増加量 は少ない。一方、外界の温度が低いときには、外界は秩序的であるから、系からの熱拡散は、外 界をより無秩序にするために大きく貢献し、外界のエントロピーの増加量は大きくなる。つまり、 熱量の変化が一定のとき、エントロピーの増加量は温度に反比例するというわけである。

実際の反応においては、系のエントロピーが減少することももちろんある。しかし、比べるべきものは系のエントロピー増加と外界のエントロピー増加であり、系のエントロピーが減少しても外界のエントロピー増加が、あるいは外界のエントロピーが減少しても系のエントロピー増加がそれを補って余りあれば、その反応は自発変化として起こりうる。すべての自発変化は、系と外界をあわせた孤立系のエントロピーが増大する方向に進む(熱力学第二法則)のであって、自発的に進まない反応を起こそうとすれば、大きな自発性をもつ反応と連結させ、全エントロピーが増大するようなシステムを作る必要がある。

孤立系のエントロピー変化を、系だけの変化に注目して表すと次のようになる:

$$\Delta S_{\hat{\mathcal{L}}} = \Delta S_{\tilde{\mathcal{R}}} + \Delta S_{\mathcal{N}\mathcal{R}} = \Delta S_{\tilde{\mathcal{R}}} + \frac{-\Delta H_{\tilde{\mathcal{R}}}}{T} = -\frac{1}{T} (\Delta H_{\tilde{\mathcal{R}}} - T\Delta S_{\tilde{\mathcal{R}}})$$

この式の最右辺の括弧内を考慮して、ギブスエネルギーGを次のように定義する:

 $\Delta G = \Delta H - T \Delta S(J)$

H、T および S は状態量であるから、G も状態量である。2つ上の式からわかるとおり、自発変化は G が減少する方向に起こり、G 極小において平衡状態となる。ギブスエネルギーの詳細については後述する。

さて、先にエントロピーの定義を示したが、エントロピーとは何かをもう少し具体的につかみ たいところである。

一般的に、同じ物質の異なる相におけるエントロピー変化は左の ようになる。温度の上昇と共に固体のエントロピーは徐々に増加す る。固体が融けてより無秩序な液体になる融点で、エントロピーは 急激に増大する。液体・気体においても温度の上昇と共にエントロ ピーは徐々に増加し、液体が蒸発してより無秩序な気体になる沸点 で、エントロピーは急激に増大する。このことは、分子の配置の乱 雑さの増加とエントロピーの増加が比例関係にあることを示してお り、したがってエントロピーは分子の配置の乱雑さの尺度であると 解釈できる。

エントロピーの定義dS = ^{dq}/_rからは、エントロピーが分子の配列の 乱雑さの尺度であることは直接的にはわからない。しかし、物質は分子から構成されており、分 子集団の振る舞いを考えミクロの視点からエネルギーやエントロピーを考察する統計熱力学に よれば、エントロピーS は次式で表される:

$S = k \ln W(J/K)$

これはボルツマンの式とよばれる。W は分子の可能な配置の仕方の数であり、kはボルツマン係数(分子1個あたりの気体定数、 $\frac{R}{N_A}$)である。この式より、S はln Wに比例し、分子の配列の乱雑さの尺度であることが理論的に示される。

具体的に考えよう。 左図の(a)は絶対零度で 15 個の CO 分子が 完全に規則正しく並んでおり、(b)では絶対零度で 15 個の CO 分子が左向きあるいは右向きのどちらかの配向をとっている。

(a) (b)
(a)の分子配置は1通りであるから、S = k ln1 = 0
(b)の分子配置は2¹⁵通りであるから、S = k kn2¹⁵ = 1.44 × 10⁻²²(J/K)
よって、確かに(b)の分子配置の方が乱雑である。
分子配置の乱雑さという観点から反応を捉えてみよう。

反応過程	発熱量(kcal/mol)	300K	400K
$2NH_2(g) \rightarrow N_2H_4(g)$	56	100%	100%
$2NO_2(g) \to N_2O_4(g)$	14	70%	0%

上の2つの反応は、どちらも2分子から1分子が生成するため、反応が進むと配置の乱雑さに 由来する系のエントロピーは減少する。また、発熱反応であるため、反応が進むと外界のエント ロピーは増大する。しかし、下の反応では、S_系の減少がS_{外界}の増加を上回るため、反応が進行 しにくくなっている。

4. 反応速度と平衡

〇平衡とギブスエネルギー

 $H_2 + I_2 \rightleftharpoons 2HI$

の反応を考える。左図は 721K における、 水素一ヨウ素混合物の成分の時間依存を表 したものである。これを見ると、H₂ + I₂から の反応も、HIからの反応も共通の平衡に達し ている。なぜ反応がこの平衡に行き着くのか を、前回示したギブスエネルギーの式

 $\Delta G = \Delta H - T \Delta S$

を用いて考察してみよう。

ここで、エンタルピーH、エントロピーS は、物質量に比例して変化する示量性変数で ある。すなわち、物質量が n 倍になると H、 S も n 倍となる。このことを念頭に置いて、 以降考察を進めていく。

反応途中の系のギブスエネルギーの値について考える。反応の進行度が α(H₂、 I₂が αmol 消費

されたとき)のときのギブスエネルギーG(α)は、

$$\begin{split} \mathsf{G}(\alpha) &= \mathsf{H}(\alpha) - \mathsf{TS}(\alpha) = \left[H_{H_2}(\alpha) + H_{I_2}(\alpha) + H_{HI}(\alpha) \right] - \mathsf{T}[S_{H_2}(\alpha) + S_{I_2}(\alpha) + S_{HI}(\alpha)] \\ & \boldsymbol{ \textit{L}} 表 \texttt{td} \boldsymbol{ \textit{S}}, \end{split}$$

まずエンタルピーH(α)を考えよう。H(α)は基準点、つまり反応の始点を基準として測るので、 反応終点 α=1 における H(α)の値が反応エンタルピーΔH(反応熱)となる。反応熱は、(生成物の

	$\Delta_f H^{\circ}(\mathrm{kJ/mol})$
HI(g)	26.48
$H_2(g)$	0
$I_2(g)$	62.44

標準生成エンタルピー $\Delta_f H^\circ$ の和)-(反応物の $\Delta_f H^\circ$ の和)として求め られ、いま $\Delta_f H^\circ$ は左の表のようであるから、反応熱 Δ H は Δ H = 2 $\Delta_f H^\circ$ (HI,g) - $(\Delta_f H^\circ(H_2,g) + \Delta_f H^\circ(I_2,g)) = -9.48$ (kJ) となり、反応途中(0< α <1)における反応熱 H(α)は、 α mol $\mathcal{O}H_2$ 、 I_2 が消費されて 2 α mol \mathcal{O} HIが生成するときの反応熱であるから、

$$H(\alpha) = -9.48\alpha(kJ)$$

となる。よって、H(α)は反応の進行と共に直線的に減少することがわかり、そこから判断する 限りでは、反応は α→1 の方向に進むと考えられる。

	$S^{\circ}(J/K \cdot mol)$
HI(g)	206.59
$H_2(g)$	130.68
$I_2(g)$	260.69

次に、反応途中のエントロピーS(α)を考えよう。エントロピーに ついても同じように、反応始点を基準として測り、反応終点 α=1 における S(α)の値が反応エントロピーΔS となる。ΔS は(生成物の標 準モルエントロピーS[°]の和)-(反応物のS[°]の和)として求められ、い まS[°]は左の表のようであるから、反応エントロピーΔS は

 $\Delta S = 2S^{\circ}(HI,g) - (S^{\circ}(H_2,g) + S^{\circ}(I_2,g)) = 21.8(J/K)$

となる。しかし、エンタルピーと同じように、S(α) = 21.8 α (J/K)とすることはできない。なぜなら、エントロピーは物質量だけではなく、圧力によっても変化する状態量だからである。

ここで、気体が等温過程で(n, P1)から(m, P2)に変化するときのエントロピー変化に関して一般

的な考察を行う。等温変化においては分子の内部エネルギ ー変化は O であるから、系の吸収した熱量 q と系のなした 仕事 w は等しい。可逆過程においては、

w =
$$\int_{V_1}^{V_2} P dV = nRT \int_{V_1}^{V_2} \frac{dV}{V} = nRT ln \frac{V_2}{V_1} = nRT ln \frac{P}{P}$$

であり、これは系のなす最大仕事である(詳しくは熱力学で)。このとき、

$$\Delta S = \frac{q}{T} = nR \ln \frac{P_1}{P_2}$$

となる。これと、定圧下において気体 m モルのエントロピーが n モルのエントロピーの $\frac{m}{n}$ 倍である(示量性)ことから、求めるエントロピー変化は、

$$\Delta S = \frac{m}{n} \times nR \ln \frac{P_1}{P_2} = mR \ln \frac{P_1}{P_2}$$

となる。

これを用いて、反応途中の系のエントロピーS(α)を考えよう。

まず、エントロピーは状態量であるため、エントロピーの変化は最初と最後の状態のみによっ て決まる。従って、②から④、⑥から④のそれぞれの変化の途中で、それぞれ③、⑤のような仮 想的な状態を考えることができる。先に示した式を用いると、それぞれの過程におけるエントロ ピー変化は、

①→②は、(1,1)から(2,0.5)への移行なので、2R ln 1 of

②→③は、(2,0.5)から(2,0.5(1-a))への移行なので、2R ln 0.5 0.5(1-a)

③→④は、定圧下で物質量が(1-α)倍になるので、エントロピーも(1-α)倍

ここまでがH₂、I₂に関わるエントロピー変化である。

⑥→⑤は、(2,1)から(2,α)への移行なので、2R ln $\frac{1}{\alpha}$

⑤→④は、定圧下で物質量がα倍になるので、エントロピーもα倍

ここまでがHIに関わるエントロピー変化である。

以上より、反応終点⑥では基準点①より ΔS=21.8(J/K)だけエントロピーが高いことも考慮して、 反応途中のエントロピーS(α)は次のようになる:

反応途中のエントロピーS(α)を、α を横軸にとってグラフに表した のが左図である。Sの変化から判断する限り、反応は必ずしも α→1 に 向かうわけではない。

 $G(\alpha) = H(\alpha)$ -TS(α)より、反応の進行に伴うギブスエネルギーの変化は 左下図のようになる。 $\alpha = 0.8$ 付近で $G(\alpha)$ は極小値をとっており、この 極小点より左ではHIを生成する方向に反応が進み、極小点より右では H_2 、 I_2 を生成する方向に反応が進む。極小点では反応はどちらにも進 まない、すなわち平衡に達している。

20

このことをより一般化して述べると、反応の進行度がαであるとき、

$$\frac{\mathrm{dG}(\alpha)}{\mathrm{d}\alpha} < 0$$

ならば反応はさらに進み、不等号の向きが逆なら反応は逆行し、

$$\frac{\mathrm{d}\mathrm{G}(\alpha)}{\mathrm{d}\alpha}=0$$

ならば平衡に達しているということである。

そこで、 $\frac{dG(\alpha)}{d\alpha}$ を実際に計算してみよう。

$$G(\alpha) = H(\alpha) - TS(\alpha) = \alpha \Delta H - T \left[\alpha \Delta S + 2R \left\{ (1 - \alpha) ln \frac{1}{0.5(1 - \alpha)} + \alpha ln \frac{1}{\alpha} \right\} \right]$$
$$= \alpha (\Delta H - T\Delta S) + 2RT \{ (1 - \alpha) ln 0.5(1 - \alpha) + \alpha ln \alpha \}$$

となるから、

1

自由エネルギー

純粋な 反応系 平衡点

純粋な

生成系

$$\frac{\mathrm{dG}(\alpha)}{\mathrm{d}\alpha} = \Delta \mathrm{G} + \mathrm{RT} \ln \left(\frac{\alpha}{0.5(1-\alpha)}\right)^2 = \Delta \mathrm{G} + \mathrm{RT} \ln \frac{p_{H_1}^2}{p_{H_2} p_{I_2}}$$

となる。これは G(α)のグラフの点 α における接線の傾きであり、反応物と生成物がある組成で 混合しているとき、その組成のまま反応が進行すれば 1mol あたりどれだけギブスエネルギーが 変化するかを示していて、反応ギブスエネルギーと呼ばれる:

$$\Delta_r G \equiv \frac{\mathrm{dG}(\alpha)}{\mathrm{d}\alpha} = \Delta_r G^\circ + \mathrm{RT} \ln Q$$

Q は反応指数と呼ばれ、気相反応においては各成分の分圧で表される。 $\Delta_r G^{\circ}$ は標準反応ギブスエ ネルギーと呼ばれ、次式で定義される:

 $\Delta_r G^\circ = (生成物の\Delta_f G^\circ O \pi) - (反応物の\Delta_f G^\circ O \pi)$

 $\Delta_{f}G^{\circ}$ は標準生成ギブスエネルギーと呼ばれる量で、標準状態におい て化合物 1mol をその構成元素から生成するときのギブスエネルギ ー変化を表す。つまり $\Delta_{r}G^{\circ}$ は、左の矢印の部分のエネルギー差を表 している。 なぜ、反応は完全に完結しない、つまり $\Delta_{r}G = \Delta_{r}G^{\circ}$ とならないの

だろうか。それは、複数の物質が混ざり合うことによって乱雑さを 増大させようとする自発性のためである。したがって、RT InQはエ ントロピーの変化に起因するもので、物質の混合によるギブスエネ ルギーの変化を表している。

また、繰り返し述べたように、反応が平衡状態にあるとき、 $\Delta_r G = 0$ となっている。すなわち、

$$\Delta_r G^\circ + \operatorname{RT} \ln Q = 0 \quad \Leftrightarrow \ln Q = -\frac{\Delta_r G^\circ}{RT}$$

である。このとき、反応指数Qは(E)平衡定数に相当する。例えばA+B → 2Cの反応では、

$$Q = \frac{[p_{C}]_{eq}^{2}}{[p_{A}]_{eq}[p_{B}]_{eq}} = K$$

となっている。よって、平衡定数 K は、

$$\mathbf{K} = \exp\left(-\frac{\Delta_r \boldsymbol{G}^\circ}{RT}\right)$$

と表され、計算によって求めることができる。

第5章 分子集団

1. 分子間に働く力

〇理想気体と実在気体

気体の状態方程式PV = nRT(物質量 n 一定)では、温度 T 一定で、P を大きくすると、V は限り なく O に近づき(ボイルの法則)、また、圧力 P 一定で、T を限りなく O に近づけると、V は限り なく O に近づくはずである。しかし、実際に存在する気体(実在気体)では、圧縮して圧力を十分 大きくしたり、冷却して十分に温度を下げた場合、気体の液体や固体への状態変化がおこり、体 積が O にはならない。

このように、実在気体は厳密には気体の状態方程式には従わない。これに対し、常に気体の状態方程式に従うと仮想した気体を理想気体という。つまり、気体の状態方程式を完全に満足させるには、気体に次の条件を与える必要がある:

①分子間に働く引力を O とすると、いくら温度が下がり分子の熱運動のエネルギーが小さくなっても、気体は凝縮したり凝固したりすることはなくなる。

②分子自身の体積を0とすると、圧力を高くするほど体積は限りなく0に近づく。

上の①、②の条件を満たす気体ならば、厳密に気体の状態方程式に従うはずである。すなわち、 理想気体とは、分子間に引力が働かず、分子自身の体積が0とみなせる気体のことである。

1molの理想気体については、状態方程式から導かれる次の値 Z(圧縮率因子、注21)は、どんな圧力および温度においても常に1となるはずである。

$$\mathbf{Z} = \frac{PV_m}{RT}$$

左図は、0℃における各種の気体における Z と P の関係を示している。CO2 やCH4の場合、圧力がそれほど高くない範囲では、Z の値が減少する。これは、P が大きくなるにつれて、実在気体の体積の実測値がボイルの法則で求めた体積の計算値よりも小さくなったことを示す。つまり、加圧により分子間距離が小さくなると、分子間に引力が作用して引き合い、体積がより減少したためである。

しかし、圧力をさらに高くすると、Zの値が増加する。これは、高圧で分子間距離がある限度 より小さくなると、それまで働いていた分子間の引力に比べて電子雲の重なりによる分子間の強 い反発力が働くようになるとともに、気体の体積に比べて分子自身の体積が無視できなくなり、 実在気体の体積の実測値がボイルの法則で求めた体積の計算値よりも大きくなったためである。

このように、実在気体は、高圧や低温になると理想気体から外れた挙動を示すようになる。その原因は、①気体分子が有限の体積をもつ、②気体分子間に分子間力が働く、ためである。そこで、オランダのファンデルワールスは、これらの効果を補正することにより、実在気体にも成り立つ状態方程式を導いた(注22)。

$$\left(\mathbf{P}' + \frac{an^2}{{V'}^2}\right)(\mathbf{V}' - nb) = nRT$$

P':実在気体の圧力、V':実在気体の体積

これをファンデルワールスの状態方程式といい、実在気体のかなり広い圧力範囲でよく成立する。 定数 *a*,*b* は各気体で固有の値を取るが、*a* が大きいほど分子間力の影響が大きく、*b* が大きいほ ど分子体積の影響が大きいと考えられる。

以下では、実在気体を実在気体たらしめる要因としての分子間力について、様々な種類のもの に触れながら考えてみよう。

〇分子間相互作用

複数の原子が化学結合によって連結され、分子は構成される。代表的な化学結合には、イオン 結合・共有結合・金属結合があり、それぞれ、無機塩、有機分子、金属結晶を形作る基盤となっ ている。分子の化学構造は分子を構成する原子間の化学結合によって決まるが、その分子が3次 元空間でどのような立体構造をとるか、あるいは、液体中および固体中で分子同士がどのような 配列構造をとるかは、分子同士(あるいは分子内部のある特定の部分同士)の相互作用、すなわ ち分子間相互作用に依存する。分子間相互作用は、分子やその集合体である液体や固体の性質を 決定する要因となるばかりでなく、たんぱく質やDNA などの生体機能分子の性質と機能を理解 する上でも重要な概念である。これらの生体分子の機能発現は、その3次元立体構造に依存して おり、さまざまな分子間相互作用/分子内相互作用がそこには働いているからである。

代表的な分子間相互作用には、静電相互作用、ファン・デル・ワールス相互作用、水素結合に よる相互作用がある。この章では、これらの相互作用の解説に加え、水素結合を拡張した概念で ある水素原子とπ電子との相互作用、π電子間の相互作用、配位結合を介した相互作用、分子間 での電子の移動に伴って生じる相互作用である電荷移動相互作用についても簡単に紹介する。

OLennard-Jones ポテンシャル

2つの分子がある距離だけ離れている時に、もっともエネルギー的に安定な状態にあるとする。 この距離より近づけようとすると反発力(斥力)が働き、遠ざけようとすると引力が働くため、近 づけるにも引き離すにもエネルギーを供給しなければならない。結局どちらの方向に分子間距離 が変化しても、分子対のポテンシャルエネルギーは増加することになる。任意の分子対のポテン シャルエネルギーが、分子間距離rによってどのように変化するかを表す経験的モデル式のひと つが、次式で示す Lennard-Jones ポテンシャルである。分子間相互作用の距離依存性を表す 一般式として、良く用いられている。

$$U(r) = 4\varepsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right]$$

ここで、 ϵ や σ は分子に固有のパラメーターである。12次の項は、分子間に働く斥力(電子雲の 重なりによって働く反発力)を表す。この反発力は、主としてパウリの排他律に基づいて起こる。 2つの電子軌道が重なると、排他律のためにどちらかの電子がその軌道にとどまれなくなるため、 その電子に許される最もエネルギーの低い軌道を回っていたはずの電子が、よりエネルギーの高 い軌道へ移らざるを得なくなり、全体のポテンシャルエネルギーが増加する。一方、6次の項は 引力を表しており、二つの分子間の分散力に依存する(分散力については後述)。

このLennard-Jones ポテンシャル式から、次のことが読み取れる。

1. 分子間にはたらく斥力は距離の12乗に反比例し、距離が減少すると急激に増加する。

2. 分子間引力は距離の6乗に反比例し、距離が減少するとその値も減少する(引力の大きさは 絶対値であるから、引力は大きくなる)。

3. ポテンシャルエネルギーは、分子間距離が無限大の時0となる。

4. ポテンシャルエネルギーの極小値は-εである。

5. 分子間距離 σ の時に、ポテンシャルエネルギーは再び O となる。

εはもっとも安定な状態での分子間引力の大きさを表し、σは分子の大きさを表していることが わかる。逆に、距離無限大(U=0)の状態から分子を接近させ、ポテンシャルエネルギーが極 小値まで減少した後、再び U=0 まで増加した時に、分子同士が接触したと考えてもよい。これ 以上分子を接近させようとすると、お互いの電子軌道同士の重なり合いが大きくなり、パウリの 排他率による斥力が顕著に現れる。

しかし、Lennard-Jones ポテンシャルは、単純な分子、例えば希ガス分子や窒素分子のよ うな非極性で小さな分子間の相互作用については、十分正確にその挙動を表現するが、極性分子 やイオンの相互作用、水素結合のような方向性のある相互作用のある分子の場合には適用できな

相互作用	ポテンシャルエネルギーの	エネルギー	
	距離依存性	(kJ/mol)	開合
①イオン-イオン間	1/r	250	イオン間
②イオン-双極子間	$1/r^{2}$	15	
③双極子-双極子間	$1/r^{3}$	2	静的な極性分子間
④双極子-双極子間	$1/r^{3}$	0.3	回転する極性分子間
⑤London 分散力	$1/r^{6}$	2	全てのタイプの分子間力
⑥水素結合	1/r	20	

い。次の表はいろいろな分子間力をまとめたものである:

以下、これらの分子間力について詳しく解説していく。

〇分子間に働く静電相互作用

①イオン-イオン間に働くクーロン相互作用

有機分子の内部に-COOH基や-NH2基があると、電離して-COO⁻や-NH3⁺となり、分子は電荷を持つようになる。正負の点電荷の間には引力が働き、この引力はクーロン力と呼ばれる。それぞれの電荷量を*q*+,*q*-で表すと、クーロン力によるポテンシャルエネルギーは次式で表される。

 $U(r) = -\frac{q_+q_-}{4\pi\epsilon_0\epsilon_r r}$ r:点電荷間の距離、 ϵ_r :媒質の比誘電率

無限遠ではO、引力であるから接近すると負の方向に変化する。そして、距離rに反比例してその大きさ(絶対値)は増加する。近接した正負2個の1価イオン間に働くクーロン相互作用の大きさは、 -8.4×10^{-19} J(または-500kJ/mol)となる(ここで、距離rには、 Na^+ と Cl^- のイオン半径の和 0.276 nm を用いた)。300K での熱エネルギーの大きさは、k をボルツマン定数として、kT = 4.1×10^{-21} J(または 2.5kJ/mol)となる。クーロン力は誘電率に依存するため、誘電率の高い媒質、例えば水($\epsilon_r = 80$)の中では2桁近く減少することがわかる。クーロン相互作用には方向性は無く、等方的に働く。

ところで、アミノ酸分子のように、分子内に負に帯電する部位(-COOH)と正に帯電する部位 (-NH₂)の両方を有する分子の場合、分子内にもクーロン力が働く。しかし、NaClのような無機 イオン結晶内でのクーロン力と比べると、電荷間の距離が離れていること、100%電離はしてい ないことなどから、弱いクーロン力となっている。

②イオン-双極子間に働く相互作用

分子が全体として電気的に中性であっても、分子を構成する原子の電気陰性度の差によって、 分子が分極している場合がある。言い換えれば、分子内に電荷のかたよりが生じ、分子内のそれ ぞれの原子が部分電荷を持つようになる。このように電荷の偏りをもった分子を極性分子といい、 その極性の大きさは、先に解説した双極子モーメントとよばれる尺度を用いて表す。極性分子と、 イオンあるいは別の極性分子との間には、静電的な力が働く。これは、電荷の符号やモーメント の向きによって引力にも斥力にもなる、分子の配向性に依存した相互作用であり、総称して配向 相互作用と呼ばれる。

まずは、イオン(点電荷)と極性分子(双極子)の相互作 用について考える。左図に示すように、点電荷 q から距離 r 離れた位置に、双極子モーメント μ を有する分子があるとす る。イオンと双極子との静電相互作用によるポテンシャルエ ネルギーは、分子の正に分極した末端とイオンとの相互作用 と、負に分極した末端とイオンとの相互作用の和である。分

子が、 点電荷と分子の中心線を結ぶ直線に対して θ 傾いている場合には、

$$U(\mathbf{r}, \theta) = -\frac{q\mu\cos\theta}{4\pi\varepsilon_0\varepsilon_r r^2}$$

と表される(注23)。分子の長さ l は距離 r に比べて十分小さく、点双極子(l = 0)とみなせる場合の結果である(実際は、r = 2l付近までこの仮定は有効である)。

 $\theta = 90^{\circ}$ の場合、すなわち分子が中心線に対して垂直に立っている場合は、イオンから正に 分極した末端までの距離と負に分極した末端までの距離が等しく、相互作用の大きさは同じで符 号が反対になるので、イオンと双極子間の相互作用のポテンシャルエネルギーは O となる。陽 イオンの場合は、 $\theta = 0^{\circ}$ (双極子の負側が点電荷に近くなる場合)では最も大きな引力が働き、 $\theta = 180^{\circ}$ (双極子の正側が点電荷に近くなる場合)には最も大きな斥力が働く。陰イオンの場合は 逆となる。(注24)

〇双極子間に働く相互作用

2個の極性分子が接近すると、両者の間には双極子-双極子相互作用が現れる。2つの双極子の配置は左図に 示すいくつかのパラメーターで記述することができる。 2 分子間の距離を r、2個の分子の双極子モーメントを それぞれμ1、μ2、2つの双極子モーメントの配向角をθ1、 θ2、φ とするとき、双極子同士の相互作用によるポテン シャルエネルギーは、

$$U(r, \theta_1, \theta_2, \varphi) = -\frac{\mu_1 \mu_2}{4\pi\varepsilon_0 \varepsilon_r r^3} (2\cos\theta_1 \cos\theta_2 - \sin\theta_1 \sin\theta_2 \cos\varphi)$$

となる(注25)。双極子-双極子相互作用の大きさは距離の3乗に逆比例するため、前記2つの 静電相互作用と比べて、分子同士が非常に接近した場合にだけ顕著になる。相互作用のポテンシ ャルエネルギーが室温での熱エネルギーと同程度となるのは、双極子モーメントが1デバイ (3.336×10⁻³⁰Cm)の場合でかつ真空中という条件の下で、距離が0.3 nm 前後の時である。2 個の双極子が直列に並んだ場合($\theta_1 = \theta_2 = 0^\circ$ 、 $\phi = 任意$)に、引力は最大となる。2個の双極 子が互いに平行かつ双極子モーメントの向きが逆になるように並んだ場合($\theta_1 = \theta_2 = 90^\circ$ 、 $\phi = 180^\circ$)には、半分の値となる。したがって、直列に分子が配列するほうが一見有利な ように見える。しかしながら、これは距離 r が同じであると仮定した場合の話であり、多くの極 性分子は異方性のある形状、例えば細長い形状をしている。その場合は、分子が平行に配列した 方が分子同士がより接近できるため、距離 r が小さくなり、結果として熱力学的に有利となる。

双極子-双極子相互作用は、クーロン相互作用やイオン-双極子相互作用と比べると、かなり 小さい。真空中では、0.3 nm 程度、溶媒中ではさらに短い距離まで離れただけで、熱エネルギ ーと同等の大きさになってしまう。したがって、双極子-双極子相互作用による分子間の強い配 向性が、液体状態で現れることはない。例外は、分子の大きさの割に双極子モーメントが大きな 場合で、例えば、水分子がそれにあたる(水分子間の特殊な相互作用については後述)。 双極子-双極子相互作用しか働いていない場合、極性分子同士の距離が少し離れただけで、相 互作用のポテンシャルエネルギーの大きさが熱エネルギーよりも小さくなり、分子は熱運動によ り自由に回転できるようになる。実際には、相互作用ポテンシャルによるボルツマン分布に従う ため、引力相互作用が働く角度に分子が向く確率が大きくなる。この熱運動による θ_1 、 θ_2 、 φ の ボルツマン分布を考慮に入れ、ポテンシャルエネルギーの角度平均をとると、次式の双極子-双 極子相互作用(Keesomの相互作用)を得る(注26)。

$$U(\mathbf{r}) = -\frac{1}{3kT} \left(\frac{\mu_1 \mu_2}{4\pi\varepsilon_0 \varepsilon_r}\right)^2 \frac{1}{r^6}$$

この式からわかるように、相互作用による力は常に引力であり、その大きさは距離の6乗と絶対 温度 T に逆比例する。

〇誘起双極子との相互作用

双極子モーメントを持たない無極性分子でも、イオンや極性分子によって作られる電場の中に 置かれると、分子内の電荷に偏りが生じ(分極)、双極子モーメントが誘起される。この誘起双極 子によって、イオンや極性分子と無極性分子の間に静電的な相互作用が働く。これらの誘起双極 子相互作用はすべて引力である。

誘起双極子モーメント μ_i の大きさは、次式に示すように、分子の分極率 α と電場の強さ E により決定される。(注27)

$$\mu_i = \alpha E$$

イオンと分子の距離が r の場合について、イオン-誘起双極子
相互作用を考える。イオンから距離 r 離れた場所での電場の強さ
E は、

$$\mathbf{E} = \frac{q}{4\pi\varepsilon_0\varepsilon_r r^2}$$

となる。この電場によって誘起される双極子モーメントの大きさは、2式から、

$$\mu_i = \alpha E = \frac{\alpha q}{4\pi\varepsilon_0\varepsilon_r r^2}$$

となる。 正イオンの場合は、 誘起双極子はイオンと反対方向に、 負イオンの場合はイオンを向くように 誘起され、 どちらの場合も引力が生じる。 分子にかかる静電気力の大きさは、 分子の両端に いかかる静電気力の差である。 分子の両端に 誘起された電荷の大きさを *q_iと*すると、 分子の両端での電場の差 ΔE、 距離 r での E の勾配に 分子の長さ *l* をかけたものになるから、 静電気力 F は、

$$\mathbf{F} = q_i \Delta E = q_i \frac{dE}{dr} l = \alpha \mathbf{E} \frac{dE}{dr} (\because q_i l = \mu_i) = -\frac{2\alpha q^2}{(4\pi\varepsilon_0 \varepsilon_r)^2 r^5}$$

となる。相互作用のポテンシャルエネルギーは、

$$U(\mathbf{r}) = -\int_{\infty}^{r} F dr = -\frac{1}{2}\alpha E^{2}$$

である。この大きさは、イオンと永久双極子の相互作用を表す式

$$U(r,\theta) = -\frac{q\mu\cos\theta}{4\pi\varepsilon_0\varepsilon_r r^2}$$

から予想される値(μ_i を代入し、 $\theta = 0^\circ$ とした場合の値)、

$$U(\mathbf{r}) = -\frac{q\mu_i}{4\pi\varepsilon_0\varepsilon_r r^2} = -\alpha E^2$$

の半分である。これは、イオンの電場から受け取るエネルギーの一部が、誘起双極子を形成する ために消費されたことを意味する。

次に、双極子-誘起双極子相互作用について考える。双極子 モーメント μ によって形成される電場の強さと、相互作用のエ ネルギーは、それぞれ $\mu(1+3\cos^2\theta)^{\frac{1}{2}}$

$$\mathbf{E} = \frac{1}{4\pi\varepsilon_0\varepsilon_r r^3}$$
$$\mathbf{U}(\mathbf{r}, \theta) = -\frac{1}{2}\alpha E^2 = -\frac{\mu^2 \alpha (1 + 3\cos^2\theta)}{2(4\pi\varepsilon_0\varepsilon_r)^2 r^6}$$

で与えられる(注28)。ここで、角度θは、極性分子の永久双極子モーメントが、極性分子と分極を受ける分子の中心を結ぶ線となす角である。角度θについて平均値をとれば、

$$U(\mathbf{r}) = -\frac{\mu^2 \alpha}{(4\pi\varepsilon_0\varepsilon_r)^2 r^6}$$

となる(注29)。双極子-誘起双極子相互作用のポテンシャルエネルギーは距離の6乗に逆比例 し、Debye相互作用、あるいは誘起双極子相互作用と呼ばれる。

誘起双極子モーメントによる相互作用は、双極子モーメントを持たない分子同士の間にも存在する。無極性分子でも、電子分布の時間的な揺らぎによって瞬間的に双極子が生じる。揺らぎによって生じた双極子によって、隣接する分子に誘起双極子が生じ、それによって引力が発生する。この相互作用のポテンシャルエネルギーも同様に、距離の6乗に逆比例する。この相互作用はLondonの分散力と呼ばれ、このあと説明する van der Waals 力の一部を占めている。

Ovan der Waals カ

配向相互作用(Keesom 相互作用)、誘起相互作用(Debye 相互作用)、分散力相互作用 (London 相互作用)の3種類の相互作用はすべて双極子同士の相互作用に起因し、同じ距離 依存性を有する。これら一連の力学的相互作用を総称してファン・デル・ワールス相互作用(力 の次元で考える場合はファン・デル・ワールス力)と呼ぶ(注30)。上記の3つの相互作用を総 合して、ファン・デル・ワールス相互作用のポテンシャルを以下のように距離の6乗に反比例す る1つの項にまとめて考えることができる。(注31)

$$U_{vdW}(r) = -\frac{C_{vdW}}{r^6} = -\frac{C_{orient} + C_{ind} + C_{disp}}{r^6}$$

〇水素結合

水は、その分子量が18と比較的小さいのにもかかわらず、高い融点・沸点と大きな蒸発潜熱を有する。例えば、周期律表の同系列にある元素の水素化合物の沸点は、H₂S(212K)、H₂Se(232K)、H₂Te(271K)であるが、水H₂Oの沸点は373Kであり相当に高い。固体・液体の水分子の間には特異的な相互作用(化学結合に似た配向性のある相互作用)が存在していることを暗示している。

水の固体である氷の結晶構造を解析すると、隣接する水分子間の0…H距離は約0.18 nmである。これは、水分子内部の0-H共有結合距離0.1 nmよりは大きいが、0原子とH原子のファン・デル・ワールス半径の和0.26 nmよりも小さい。氷を構成する水分子の間には、共有結合とは異なるある種の結合の存在があるように見える。このような分子間相互作用に対して、水素結合とよばれる概念が提唱された。

水素結合は、水分子だけに特有な相互作用ではなく、電気的に陰性な原子 X(例えば F、0、 N等)に結合した水素原子 H と、同じように電気的に陰性な原子 Y との間に,

$XH + Y \rightarrow X-H\cdots Y$

のように形成される。ここで、X-H 結合は共有結合であり、その結合エネルギーは数 100kJ/mol である。これに対し、水素結合の強さは 10~40 kJ/mol であり、ファン・デル・ワールス力より も1桁以上大きいが、共有結合よりは弱く、室温の熱エネルギー(300K ≒ 2.5kJ/mol)よりも1桁 程大きい。室温での熱エネルギーでは、水素結合を完全に切断するまでは至らないことを示して いるが、水素結合による分子の会合構造に影響を与える程度には大きい。

水素結合は、極性有機分子間にも存在し、その影響で極性有機化合物の沸点は高くなる。例 えば、n-ブタン、アセトン、酢酸の分子量は、それぞれ 58、58、60 とほぼ同じであるが、その 沸点は、-0.5℃、56.5℃、118℃である。水素結合によって2量体を形成する酢酸分子の沸点は、

O-H----O R→ → R O----H-O N→ R O----H-O があることも特徴である。

ここで、水素結合の実体について考えてみよう。水素原子は正電荷を持つように分極する傾向 が強く、電気的に陰性な原子と相互作用する。また、水素原子はとても小さいため相互作用する 原子に対して容易に接近することができ、より強く相互作用する。水素結合の概念が初めて提唱 されたときには、水素結合は共有結合に近い化学結合で、2個の電気的陰性原子 X, Y の間で X …H…Y の形で水素原子 H を共有していると考えられた。しかし、現在では、水素結合の実体は 静電的相互作用であり、水素結合の結合エネルギーは、主に水素原子と酸素原子や窒素原子との 電気陰性度の差によって生じる分極X⁶⁻-H⁶⁺…Y⁶⁻による静電ポテンシャルエネルギーに起因 するものと考えられている(双極子-双極子相互作用)。これに加えて、

 $X - H \cdots Y \rightleftharpoons X^{-} \cdots H^{+} - Y$

で表されるような、水素原子が X-H からプロトンとなって Y 側へ移動した状態と、もとの X-H

状態との間での共鳴による安定化がある。この相互作用は電荷移動相互作用と呼ばれ、後でさら に詳細に説明する。双極子-双極子相互作用と電荷移動相互作用には方向性があり、水素結合的 相互作用が方向性を持つ原因となっている。さらに、誘起双極子相互作用,分散力等の寄与もあ るといわれている。

水素結合の結合エネルギーが室温付近の熱エネルギーでは解離 しないほどの大きさを有すること、水素結合が明確な方向性を持 っていることから、水分子はお互いに水素結合で結ばれた会合体 を形成する。水素原子は1つの水素結合に、酸素原子は2つの水 素原子に参加できるため、2つの水素原子と1つの酸素原子をも つ水分子は、4つの水素結合に加わることができる。結晶化した 水、すなわち氷の中で水分子は、酸素原子が正四面体の各頂点に 配置された構造を取り、1つの水分子は4つの水素結合に参加し

ている。逆に言えば、1つの水分子に4つの水分子が配位していることになる(左図)。氷が融解 して液体の水になると、1つの水分子が関与する水素結合の数は、3~3.5と固体の水よりも やや小さくなるが、水分子間の立体的な会合構造はある程度保持される。この会合構造は結晶の ようにがっちりとした固い構造ではなく、熱運動による揺らぎと不規則性をもつ柔らかな会合構 造である。このように分子が会合している液体を、会合液体と呼ぶ。

〇疎水性相互作用

水と油を一緒にすると、混合せずに油と水が分離する。外見上は、油を構成する疎水性分子が 集合するように引力的相互作用が働くように見える。このような相互作用は、疎水性相互作用と 呼ばれており、その原理は次のように考えられている。

先に述べたように、液体の水は立体的な会合構造を持ち、その配位数は3~3.5である。こ の水分子会合体の中に疎水性の分子が投入されると、疎水性分子と水分子は水素結合を形成しな いため、疎水性分子の周囲の水分子は水素結合をする相手を失うことになる。その結果、疎水性 分子の周囲の水分子は、疎水性分子の方向にできるだけ水素結合サイトが向かないように再配列 する。結局、疎水性分子を取り囲むような水分子の『かご』が形成される。(注32)この『かご』 状水分子会合体の配位数は4に近く、液体の水より規則性が高いと考えられている。疎水性分子 が水の中に入ることで、疎水性分子周囲の水分子の会合状態の規則性が高まることになる。熱力 学的に考えると、系のエントロピーが減少することになる。従って、逆に疎水性分子が水分子か ら離れる方が、すなわち疎水性分子は疎水性分子だけで集合した方が、熱力学的には有利である。 例えば、25℃で液体の n-ブタンを水と混合する場合の自由エネルギー変化は、

 $\Delta G = \Delta H - T\Delta S = -4.3 + 28.7 = 24.4 \text{kJ/mol}$

となり、エントロピーの現象の寄与が自由エネルギー変化の大部分を占めている。ΔG が正であることから、室温付近では、水と炭化水素は混ざりあわずに自発的に分離することが理解できる。 (注33) 〇その他の相互作用

• 水素結合的相互作用

-OH 基や-NH 基のように、水素結合の主役となる官能基は、π 電子系原子団からも弱い相互作 用を受ける。この相互作用も、一種の水素結合であるとされている。また、電気的に陰性な原子 に結合している水素 X-H だけでなく、炭素に結合している水素 C-H も、水素結合的な相互作用 を、電気的陰性原子の孤立電子対あるいは π 電子と及ぼしあう。これらの相互作用エネルギー は、水素結合よりも小さく、10kJ/mol 以下である。

π-π 相互作用

 π - π 相互作用は、芳香族有機分子の芳香環の間に働く相互作用で、2つの芳香環が円盤を重ね たような配置で安定化するため、 π - π スタッキングとも呼ばれる。これは静電相互作用である が、芳香族分子は分極率が大きいため分散力(London 分散力)の寄与が大きい。この相互作 用は普通の分子間力よりやや強く、いろいろな分子の立体配座や超分子構造形成に影響を与えて おり、DNAの二重らせんの高次構造の安定化、芳香族化合物結晶・液晶などの物性にも π - π 相互作用の寄与がある。

芳香環が完全に正対して重なると、電子密度の高い部分同士が重なって斥力が生じるため、少しずれて相対するほうが安定になる。2つの芳香環が相互作用するとき、1つの芳香環に対しもう1つの芳香環状が垂直に配置し、芳香環と水素原子が相互作用する場合が最も安定である(T型スタッキング)。しかし、芳香環が大きくなったり、相互作用する芳香環の数が増え、分子が配置する空間に制約がでてくると、平面上に積み重なる方が優勢となる。

・配位結合による相互作用

X, Y2つの原子が配位結合するとき、結合電子はどちらか一方の原子からだけ供給される(X +:Y → X-Y)。すなわち、電子対供与体となる原子 Y から電子対受容体となる原子 X へと、電子 が供給されてできる化学結合である。例えば、アンモニア分子NH₃とプロトンH⁺が反応してN⁺H₄ になるときには、窒素原子の孤立電子対から2つの電子が供給され、あらたに N-H 結合が形成 される。ただし、この場合は、もともとあった 3 つの N-H 結合(共有結合)と、4番目の N-H 結合は同等であり区別はつかない。

プロトンだけでなく、遷移金属原子(イオン)は、孤立電子対を共有し化学結合を形成するための空軌道をもち、共有されていない孤立電子対をもつさまざまな配位子(:CO, : CN⁻,: NH₃等)と配位結合する。配位結合の強さは、配位子と金属との組み合わせによって、水素結合と同程度の10 kJ/mol 近辺から、共有結合レベルの結合エネルギーである 300 kJ/mol 程度まで変化する。 タンパク分子の中には、金属原子と配位結合しているものも多く、生体機能の発現にも重要な役割を果たしている。 配位結合の形成には、孤立電子対の供与体と受容体が必要である。ルイスによる酸・塩基の 定義では、『酸は共有結合を形成するために他の物質から1対の電子対を受容するものであり、 塩基はその電子対を与えるものである』となっており、この定義に基づけば、配位結合の形成に かかわる孤立電子対の受容体(金属原子)はルイス酸に、供与体(配位子)はルイス塩基となり、 配位結合は酸と塩基の結合であると見なすことができる。

• 電荷移動相互作用

電荷移動相互作用は、2つの分子間で電子ないし正電荷が移動することで生まれる。先に述べたように、水素結合における電荷移動相互作用(X⁻…H⁺ − Y)は、プロトン(正電荷)がプロトン受容体 Y へ移動した状態と見なすことができ、プロトンの電荷移動配置とよばれる。

HO-OH 電子供与体:ドナー(D)と電子を受け取りやすい分子、電子受容体:ア クセプター(A)との間での電子移動に由来する。例えば、ヒドロキノン(左 図上)はヒドロキシ基を持ち分子全体として電子を出しやすくなっている 代表的な電子供与体である。また、ベンゾキノン(下)には、電子吸引性の

あるカルボニル基があり、電子受容体となる。ヒドロキノンとベンゾキノンが一緒になると、ヒ ドロキノンからベンゾキノンへ1電子移動した電荷移動錯体が形成される。この錯体形成の駆動 カは、D と A が相互作用せずに隣接している状態 DA と、D から A へ1電子移動した状態D⁺A⁻と の間の量子力学的共鳴による安定化であるとされており、それらの状態間のポテンシャルエネル ギーの差は電荷移動力と呼ばれる。この場合、電荷移動錯体の実態は、2つの状態の中間である。 その基底状態は、結合していない状態にイオン化した状態が若干含まれることにより安定化した 状態であり、 $a(DA) + b(D^+A^-)$ ($a \gg b$)で表される。一方、電荷移動錯体の励起状態は、イオン 化した状態に若干の非結合状態が含まれた状態であり、 $b(D^+A^-) - a(DA)$ ($a \ll b$)で表される。

電荷移動相互作用の大きさを記述する指標として、次式で定義される電荷移動量 ρ がある。

$$\rho = \frac{b^2}{a^2 + b^2}$$

中性の電荷移動錯体の場合、この値はOに近く、イオン性錯体の場合は1に近い。ρがO.2から O.8の範囲の中間的な値の場合、その電荷移動錯体は混合原子価状態にある。混合原子価錯体は、 中性-イオン性相転移,金属-絶縁体転移,超電導性等、興味深い物性を発現することが知られて いる。 注1: また、原子核が特に安定になる陽子数、中性子数(2,8,20,28,50,82,126 など)はマジックナンバーとよばれる。これは原子核が殻構造をもっているとする理論から説明され、希ガスの電子配置が安定であることと似ている。

ところで、ある原子について、その実際の質量は、その原子の陽子、中性子、電子の質量の単純 な和よりも小さい(この差を質量欠損という)。 これは核子が結集して原子核が構成されるとき に質量が失われるために生じるもので、核の結合エネルギーを表す。原子核の結合エネルギーは 次式で表される:

 $E = \Delta M c^2$ (ΔM: 質量欠損(kg)、c: 光速(m/s)

核子1個あたりの結合エネルギーが大きい、すなわち質量欠損が大きい核ほど安定な核である。

注2:恒星内部でのHe原子の生成

$$p + p \rightarrow {}^{2}_{1}H + e^{+} + \nu$$
$${}^{2}_{1}H + p \rightarrow {}^{3}_{2}He + \gamma$$
$${}^{3}_{2}He + {}^{3}_{2}He \rightarrow {}^{4}_{2}He + p + p$$

注3:CN サイクル

$${}^{12}_{6}C + {}^{1}_{1}H \rightarrow {}^{13}_{7}N + \gamma {}^{13}_{7}N \rightarrow {}^{13}_{6}C + e^{+} + \nu {}^{13}_{7}C + {}^{1}_{1}H \rightarrow {}^{14}_{7}N + \gamma {}^{14}_{7}N + {}^{1}_{1}H \rightarrow {}^{15}_{8}O + \gamma {}^{15}_{8}O \rightarrow {}^{15}_{7}N + e^{+} + \gamma {}^{15}_{7}N + {}^{1}_{1}H \rightarrow {}^{12}_{6}C + {}^{4}_{2}He$$

(p:陽子、e⁺:陽電子(電子と質量が同じで正電荷をもつ)、γ:ガンマ線、v:ニュートリノ)

注4:ボーアの仮定により多くの矛盾点は解決したものの、その理論には根拠がなかった。ド・ ブロイは、すべての物質は粒子と波動の2つの性質を持ち、速さ v で運動している質量 m の粒 子は、波長 λ(ド・ブロイ波長という)が

$$\lambda = \frac{h}{mv} = \frac{h}{p}$$
 h:プランク定数

で与えられる波(ド・ブロイ波)を伴っているとして、ボーアの仮定に根拠を与えた。この波長の 整数倍が軌道の周長と一致するとき、ド・ブロイ波は定在波として安定に存在できる:

$$n\lambda = 2\pi r$$
 $n = 1,2,3,...$

これに入の値を代入することにより、

$$mvr = n\left(\frac{h}{2\pi}\right) = n\hbar$$

が得られ、これはボーアの量子条件そのものである。

注5:水素原子の電子のエネルギー

等速円運動の加速度

$$a = \frac{v^2}{r}$$
 (v:速度、r:回転半径)

クーロンカが向心力になるので、

 $\frac{e^2}{4\pi\varepsilon_0 r^2} = \frac{m_e v^2}{r}$ (e:電気素量、 ε_0 :真空の透電率、 m_e :電子の質量)

これを①式とする。電子のエネルギーは運動エネルギーとポテンシャルエネルギーの和:

$$\mathbf{E} = \frac{1}{2}m_e v^2 - \int_{\infty}^r \frac{e^2}{4\pi\varepsilon_0 r^2} dr = -\frac{e^2}{8\pi\varepsilon_0 r}$$

ここでボーアの量子条件の式

$$l = m_e \mathrm{vr} = \mathrm{n} \left(\frac{h}{2\pi} \right) = n \hbar$$

を①に代入して、

$$r_n = \frac{n^2 h^2 \varepsilon_0}{\pi m_e e^2}$$
 (n = 1,2,...)

よって、

$$E_n = -\frac{m_e e^4}{8h^2 {\varepsilon_0}^2} \times \frac{1}{n^2}$$

を得る。

注6:リュードベリ定数の理論値の導出

ボーアの理論にしてもシュレーディンガーの理論にしても、主量子数 n の水素原子のエネル ギー*E_n*は次のように求められる。

$$E_n = -\frac{m_e e^4}{8h^2 {\varepsilon_0}^2} \times \frac{1}{n^2}$$

$$\Delta \mathbf{E} = \frac{m_e e^4}{8h^2 \varepsilon_0^2} \left(\frac{1}{n^2} - \frac{1}{m^2} \right) = \mathbf{h}\mathbf{v} = \mathbf{h}\mathbf{c}\tilde{\mathbf{v}} \left(= hc\frac{1}{\lambda} \right)$$

この式と、リュードベリの式

$$\frac{1}{\lambda} = R\left(\frac{1}{n^2} - \frac{1}{m^2}\right)$$

との対応を考えることにより、リュードベリ定数は次のように求まる:

$$R = \frac{m_e e^4}{8h^3 \varepsilon_0^2 c}$$

これにそれぞれの物理定数の値を代入すれば、リュードベリ定数の理論値(1.097373×10⁷m⁻¹) が求まる。

注7:シュレーディンガー方程式と行列

$$\widehat{H}\psi(x,y,z) = E\psi(x,y,z)$$

この式は行列を使った式 Ax=λx と極めてよく似ていて、行列 A が演算子Ĥに、列ベクトル x が 波動関数ψに対応している。また、右辺にスカラー(E あるいは λ)が出てくることも同じである。 λ は行列 A の固有値と呼ばれるが、E も固有値と(エネルギーを表すのでエネルギー固有値とも) 呼ばれる。さらに、x が A の固有ベクトルと呼ばれるのに対し、波動関数ψは固有関数と呼ばれ、 固有ベクトルに直交性(内積が O になる)があったように、固有関数にも直交性がある。この場合 の直交とは、次式のように掛け合わせて積分すると O になることである:

$$\int_{-\infty}^{\infty} \overline{\psi_k} \, \psi_m = 0 \qquad \mathbf{k} \neq \mathbf{m}$$

このように、行列の固有値問題とシュレーディンガー方程式には類似性が見られる。

注8:波動関数自体の意味

ところで、|波動関数|²だけに物理的な意味があるのなら、波動関数そのものを扱う必要はあるのか、という疑問が湧いてくる。そこで、2つの波動関数を重ね合わせることを考えよう:

$$\psi(r) = \psi_a(r) + \psi_b(r)$$

$$|\psi(r)|^2 = |\psi_a(r) + \psi_b(r)|^2 = |\psi_a(r)|^2 + |\psi_b(r)|^2 + 2\psi_a(r)\psi_b(r)$$

ここで、右辺の末項が2つの波動関数の干渉項になっている、すなわち強め合い・弱め合いを示していることがわかる。このように、波動関数そのものは、干渉・回折・重ね合わせなどを考える際に重要となるのである。

注9:量子井戸における波動関数

次のような1次元の井戸(量子井戸)に閉じ込められた電子を考えてみよう。

井戸の中ではポテンシャルV = 0とし、またこの井戸は無限に深いとする。仮に壁の高さが無限

でなければ、壁の中つまり0 ≤ x ≤ a以外の範囲にも電子が存在することになり(これをトンネル 効果という)、複雑になるが、この場合電子は井戸の中にのみ、安定な定在波として存在する。 このとき $\psi(x)$ は両端を固定された弦と同様の波形になり、その波長 $\lambda_n = \frac{2a}{n}$ と表せる。ここで、 波長 λ の正弦波はsin $\left(\frac{2\pi x}{\lambda}\right)$ であり、井戸の中の波動関数 ψ_n は、この正弦波の λ $\delta\lambda_n$ におきかえ たものであるから、

$$\psi_n = A\sin\frac{2\pi x}{\lambda_n} = A\sin\frac{n\pi x}{a}$$

と表される(A は振幅)。波動関数の基本的な形はこのように正弦波で表されるが、さらに次の規格化条件を考える必要がある:

$$\int_{o}^{a} \psi_{n} \psi_{n} \, dx = 1$$

先に示した規格化条件の式と積分範囲が異なっているのは、波動関数が井戸の中でのみ存在するので、x=Oから x=a まで積分すれば十分だからである。また、 ψ_n はサインで表される実数の関数なので複素共役はもとの ψ_n と同じである。さて、この規格化条件を満たす係数 A を求める:

$$1 = \int_{0}^{a} \psi_{n} \psi_{n} dx = \int_{0}^{a} A^{2} \sin^{2} \left(\frac{n\pi x}{a}\right) dx = \frac{A^{2}}{2} \int_{0}^{a} \left(1 - \cos\frac{2n\pi x}{a}\right) dx = \frac{A^{2}}{2} a$$
$$\therefore A = \sqrt{\frac{2}{a}}$$

これより、規格化された波動関数 ψ_n は、

$$\psi_n = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi x}{a}\right) \qquad n = 1, 2, 3, \dots$$

となる。

次に、この定在波が成り立つときの電子のエネルギーを求めよう。求めたψ_nをシュレーディンガー方程式に代入して、

$$\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\sqrt{\frac{2}{a}}\sin\left(\frac{n\pi x}{a}\right) = E_n\sqrt{\frac{2}{a}}\sin\left(\frac{n\pi x}{a}\right)$$

ここで、井戸の中で V=0 としたことに注意する。この式の左辺を計算すると、

(左辺) =
$$\frac{\hbar^2}{2m} \sqrt{\frac{2}{a} \left(\frac{n\pi}{a}\right)^2 \sin\left(\frac{n\pi x}{a}\right)}$$

となるので、

$$E_n = \frac{\hbar^2}{2m} \left(\frac{n\pi}{a}\right)^2$$

を得る。最も波長の長い定在波のエネルギー(n = 1の場合)は

$$E_1 = \frac{\hbar^2}{2m} \left(\frac{\pi}{a}\right)^2$$

であるから、

 $E_n = n^2 E_1$

が成り立つ。このことから、エネルギーがとびとびの値をとる、すなわち量子化されているということがわかる。

さて、先程求めた波動関数を解釈してみよう。まずわかるのは、波動関数が左右対称であるということである。つまり、どの状態においても、 $0 \leq x \leq \frac{a}{2}$ の範囲に電子を見出す確率は 0.5 である。

また、左の|波動関数|²の図において、電子を見 出す確率が O となる点(そのような点を節とい う)はエネルギーの高い状態ほど多いことがわか る。ここで、節が存在するにもかかわらず、電 子は全体に分布しうる(節で分布を制限されな い)ことは不思議に思われるが、節はあくまで点 であって、節を含む微小な空間には電子は存在 しうることに留意されたい。また、次の計算に より、電子の平均位置が^aつであることもわかる:

$$\int_{0}^{a} x |\psi_{n}(x)|^{2} dx = \frac{2}{a} \int_{0}^{a} x \sin^{2} \frac{n\pi x}{a} dx = \frac{a}{2}$$

注10: 遮蔽と浸透効果

先に示した 1s~3d 軌道の電子の分布関数のグラフを見ると、核からの平均的な距離は方位 量子数1の大きい軌道の方が小さいが、原点に近い部分のみを見れば、1が小さい軌道の方が電 子の存在確率が大きい。このため、1が大きい軌道ほど、1の小さい軌道によって遮蔽を受けやす い。このことを「浸透効果」という。

注11:水分子の構造

水分子の結合は sp³ 混成軌道を用いて考えることができるが、その結合角は 104.5°であり、109.5° よりも小さい。それは次のような理由による。4 つの sp³ 混成軌道のうち、2 つの sp³ 混成軌道 は、2 つの水素とそれぞれ共有結合をしている。残る 2 つの sp³ 混成軌道には、電子が 2 つづ つ入り、孤立電子対となっている。この孤立電子対が互いに反発するため、H-O-H の結合角は 109.5°より押し縮められている。このように、孤立電子対が存在すると混成軌道に影響を与える (原子価殻電子対反発則、VSEPR 理論)ため、結合角も変化する。同様の理由で、孤立電子対を1 つもっているアンモニア分子も、結合角は 109.5°より小さい 108°となっている。

注12:アレン分子の構造

左のような構造を持つアレン分子も*sp*²混成軌道を 形成しているが、2つの π 軌道が直交しているため結 合軸にねじれが生じる。したがって、エチレンと違い、 アレンではすべての原子を同一平面上に置くことは不可能である。ちなみに、このようなねじれ のある分子を軸不斉な分子といい、光学異性体に含めることがあるため、鏡像異性体=光学異性 体というわけではないし、不斉炭素原子が存在することは光学異性体が存在するための必要条件 でも十分条件でもない。

注13:双極子モーメントの向き

н							He
2.1							
Li	Be	в	С	Ν	0	F	Ne
1.0	1.5	2.0	2.5	3.0	3.5	4.0	
Na	Mg	Al	Si	P	S	Cl	Ar
0.9	1.2	1.5	1.8	2.1	2.5	3.0	

左の表はポーリングの求めた電気陰性度である。 電気陰性度の大きい原子の方が電子を強く引きつ けるため、負に帯電するのが普通である。ところ が、反結合軌道に電子がある場合は例外で、例え ば、CO の場合、酸素原子の方が電気陰性度が大

きいにもかかわらず、双極子の負に分極した部位は炭素原子の側にある。COの場合、反結合軌 道にも電子があり、この電子の存在確率は電気陰性の低い原子の近辺で大きくなっている。反結 合電子による寄与が結合性軌道に入った電子による分極への寄与(電気陰性度の大きい原子が負 に分極する)よりも大きい場合、全体では電気陰性度の低い原子の側が負に分極する。

注14:「スペクトル」とは、試料に対してなんらかの刺激を与えた際、その刺激や応答を特徴 づける量に対して応答強度を記録したもののことをいう。

注15: 光を吸収するという現象は、吸収された光のエネルギーが電子を励起させるために使

われたということである。これは電子のない空軌道のう ち最も準位の低い LUMO(最低空軌道)と電子の入っ た軌道のうち最も準位の高い HOMO(最高被占軌道) の間で行われる励起に関わるもので、次式を満たす振動 数 ν の光のみが吸収される:

 $h\nu = \Delta E = E_{LUMO} - E_{HOMO}$

注16:分子の振動についての補足

実際の分子のポテンシャルは、原子間距離が小さくなる方向には原子間の排斥力により 2 乗の

関数よりもさらに急激に上昇し、原子間距離が大きくな る方向では、緩やかであり、無限遠の極限においてはお 互いに力を及ぼしあわなくなる。このような違いから、 実際の振動準位は、量子数が増えるにつれて準位間隔が 狭くなっていき、遠距離の極限以上のエネルギー以上で は量子化されない連続なエネルギー帯となっている。つ まり、ポテンシャルしは実際には左図のような関数とな り、調和振動子による近似は、原子間距離が大きいときには良い近似とはいえない(非調和性)。 そこで、より正確な近似を与える関数としてモース関数と呼ばれるものがあるのだが、難しいの でここでは説明を避ける。

ところで、n 原子分子の振動では、例えばそれぞれの原子が3 次元直交座標上で運動することを考えれば、3n 通りの振動が存在する。その中に、3 つはそれぞれの座標方向に運動する並進運動、さらに核間距離を変えずにそれぞれの座標軸を中心として運動する3 つの回転運動(直線分子では2つ)が含まれる。よって、残りの 3n-6 通り(直線分子では3n-5 通り)が振動の自由度となる。

注17:光の関与する反応

まず、光の関与する反応について考える。分子が光 を吸収すると、分子はまず、電子励起状態かつ振動励 起状態に励起される。その後、スピンー重項(全電子の スピン量子数の合計 S=0)の第1励起状態の振動基底状 態S₁にすみやかに緩和する(これを Kasha 則という)。 S₁状態から複数の経路が開いている。第1の経路は、 光放出により電子基底状態(S₀状態)の振動励起状態へ の遷移である。この遷移による発光を「蛍光」と呼ぶ。 左図からわかるように、分子がS₀からS₁に励起するとき のエネルギー変化と、S₁からS₀に緩和するときのエネル

ギー変化は異なり、したがってその2つの場合で吸収あるいは放出する光の波長は異なる。第2 の経路は内部転換と呼ばれ、光を放出せずに、電子エネルギーが振動エネルギーに変換され、S₀ 状態へ失活(緩和)する過程である。このように、光を放出せずに起こる遷移を無輻射過程と呼ぶ。 第3の経路は、スピン三重項(S=1)の励起状態T₁への無輻射緩和である。これは、スピン多重度 が異なる 2 つの状態間の無輻射遷移で、項間交差と呼ばれる。また、T₁状態は二つの経路によ りS₀ へ失活する。第1の経路は発光である。T₁状態からの発光を「りん光」と呼ぶ。第2の経 路はS₀への無輻射的失活である。その他、S₁からの遷移として、光異性化(第2章で述べた cis-レチナール⇔trans-レチナールなど)や、光解離が挙げられる。

光吸収による変化にはいくつか規則がある。まず、入射した光のうち、吸収されたものだけが

反応に関わる(光化学第1法則:グロッツス・ドレーパーの法則)。さらに、光の吸収は光量子単位で行われ、1個の分子が1個の光量子を吸収し、それにより1個またはそれ以下の分子が反応する(光化学第2法則:光当量則:シュタルク・アインシュタインの法則)。また、媒質に入射する前の光の放射照度を6、媒質中を距離L移動したときの光の強度をfiとしたとき

 $\log_{10}\left(\frac{I_1}{I_0}\right) = -\alpha L = -\epsilon c l$ α :吸光係数、 ϵ : モル吸光係数、c: 媒質のモル濃度 が成り立つ。これをランベルト-ベールの法則という。

注18:反応速度式

化学反応に関与する各成分の変化量は、その間に一定の比が成り立つ従属変数であるので、特定の成分量ではなく次のような反応進行度をを定義し、その時間微分で化学反応全体の進行速度を表す。一般化反応式

 $(-\nu_A)A + (-\nu_B)B + \dots \rightarrow \nu_X X + \nu_Y Y + \dots$

において、化学量論係数 v は生成系(右辺)で正、原系または反応系(左辺)で負である。各成分の 時刻 t における物質量をn_{成分、時間}で表すと、反応進行度 ξ は次の式で各成分の物質量の時間変化 で示される。

$$\xi = \frac{n_{A,0} - n_{A,t}}{-\nu_A} = \frac{n_{B,0} - n_{B,t}}{-\nu_B} = \dots = \frac{n_{X,0} - n_{X,t}}{-\nu_X} = \frac{n_{Y,0} - n_{Y,t}}{-\nu_Y} = \dots$$

そして、反応速度 v は、反応進行度あるいは各成分の物質量の時間変化で、次のように定義される。

$$v = \frac{d\xi}{dt} = -\frac{1}{-\nu_A} \frac{dn_A}{dt} = -\frac{1}{-\nu_B} \frac{dn_B}{dt} = \cdots = \frac{1}{\nu_X} \frac{dn_X}{dt} = \frac{1}{\nu_Y} \frac{dn_Y}{dt} = \cdots$$

ところで、一般に反応系が平衡から大きく外れている場合、反応速度は濃度のべき関数として近 似可能なので反応速度 v を反応物濃度を使って次の式で表現する。

$$v = \frac{1}{V}\frac{d\xi}{dt} = -\frac{1}{-\nu_{A}} = \frac{d[A]}{dt} = k[A]^{p}[B]^{q}[C]^{r} \dots \qquad V :$$
 (4)

ー般に、反応速度を表すべき関数のべき乗係数の総和 n を全反応次数と呼び、反応速度式を分類する目的で利用される。また係数 k は n 次の速度定数と呼ぶ。なお、べき乗係数 p,q,…と化学 量論係数v_A, v_B …との間には直接の関係はない。例えば、N₂O₅の分解反応

$$2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$$

 dN_2O_5 の2次反応とはならず、1次反応 $v = k[N_2O_5]$ で表される。このことは、

$$\begin{split} N_2O_5 &\rightarrow NO_2 + NO_3\\ NO_2 + NO_3 &\rightarrow N_2O_5\\ NO_2 + NO_3 &\rightarrow NO_2 + O_2 + NO_3 \end{split}$$

$NO + N_2O_5 \rightarrow 3NO_2$

というN₂O₅の分解反応の機構において、中間体NOおよびNO₃について定常状態近似を行うことによって確かめられる。もっとも、このことの本質的な理由は、この多段階反応のうち一番上の反応が最も遅い素反応(律速段階)であり、全体の反応速度がこの素反応の速度によって決定されるからであることに留意されたい。

注19:一般にO<P<1と考えられるが、中にはP>1であるような反応も存在する。これは

次のような理由による。先にAは温度によらない定数としたが、実際は分子の内部エネルギー(分子間の位置エネルギーと、振動や回転など乱雑な熱運動の運動エネルギーの和)が反応に使われることもあり、したがってAも少なからず温度依存性をもつからである。しかし、分子同士の衝突の確率はやはりe^{-Eac}に比例するところが大きいので、Aを定数とみなすことが可能なのである。

注20:分子の存在確率とマクスウェル分布

いま N 個の分子があり、(まずは)-x、+x の1 次元の方向で運動しているとする。その中でu_xという速度を持っている分子が度の程度あるか?と考えるのが、マクスウェル・ボルツマンによる分子速度の分布のやり方による分子の運動の記述方法である。ここで速度u_xをもつ分子の数をdN とし、その割合をf(u_x)とおくと、

$$f(u_x) = \frac{N}{dN} = c \, exp\left(\frac{-m{u_x}^2}{2kT}\right)$$

と表される(c は係数、k はボルツマン係数)。この式をマクスウェル・ボルツマンの分布則とよ ぶ。何故この式で割合が得られるかは当然疑問になるが、その誘導には統計力学を基にした説明 が必要となるため、ここでは省略する。定数項の c は、 $-\infty$ から $+\infty$ まで $f(u_x)$ を積分すると1 になることから求める:

$$\int_{-\infty}^{+\infty} c \exp\left(\frac{-mu_x^2}{2kT}\right) du_x = 1$$

ここで、

$$\int_{-\infty}^{+\infty} exp(-au_x^2) du_x = \sqrt{\frac{\pi}{a}}$$

であることが知られており、これを用いると

$$c = \sqrt{\frac{m}{2\pi kT}}$$

が得られる。したがって、分子が $u_x \sim u_x + du_x$ の速度をもって運動する確率は、

$$f(u_x)du_x = \sqrt{\frac{m}{2\pi kT}} exp\left(\frac{-mu_x^2}{2kT}\right) du_x$$

となる。

この式を3次元に拡張しよう。

$$u = \sqrt{u_x^2 + u_y^2 + u_z^2}$$

とすると、分子が3次元空間で速度 u をもって運動する確率は、

$$f(u)du = f(u_x)du_x f(u_y)du_y f(u_z)du_z$$
$$f(u)du = \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} exp\left(\frac{-m(u_x^2 + u_y^2 + u_z^2)}{2kT}\right)du_x du_y du_z$$

ここで、 $du_x du_y du_z$ で表される微小空間は、半径 u の球面にある。その微小空間を u だけで表すので、

$$du_x du_y du_z = 4\pi u^2 du$$

となり、

$$f(u)du = 4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} u^2 exp\left(\frac{-mu^2}{2kT}\right) du$$

を得る。これが、分子が u~u+du の速度をもって運動する確率、すなわち速度が u~u+du の範囲に入るようなエネルギーの分配を受ける頻度であり、これをグラフに表したものが、先に示したマクスウェル分布である。

また、exp の指数項 $\frac{-mu^2}{2}$ が分子の運動エネルギーを示し、ボルツマン 係数k = $\frac{R}{N_A}$ であることから、温度 T においてあるエネルギー E_a 以上で 衝突する分子の割合(左図の E_a より右の部分の積分)がexp $\left(-\frac{E_a}{RT}\right)$ に比 例することも納得できる。

注21:ビリアル状態方程式

実在気体の圧縮因子 Z を、モル体積(1mol 当たりの体積) Wmの逆数で展開した次式

$$Z = \frac{PV_m}{RT} = 1 + \frac{B}{V_m} + \frac{C}{V_m^2} + \cdots$$

を、ビリアル状態方程式という。B,C,…は分子間力の効果を表し、順に B を第2ビリアル係数、 C を第3ビリアル係数という。ビリアル係数は温度だけの関数であり、等温線ごとの P-V 関係 値を用いて決定する。ビリアル式は B=0,C=0,…のとき理想気体の式を与え、それ以外のとき理 想気体からの隔たりを1/Vmの多項式で表すものである。

ビリアル状態方程式のもう一つの形は、圧縮因子 Z を圧力 P で展開した次式である。

$$\mathbf{Z} = \frac{PV_m}{RT} = 1 + \mathbf{B'P} + \mathbf{C'P^2} + \cdots$$

この式は P を与えてV_mを解くことができる点で便利である。係数 B',C'は前の式の係数 B,C によって次のように表される。

$$B' = \frac{B}{RT} , C' = \frac{C - B^2}{(RT)^2}$$

圧力 P が高くないとき、両式の第3ビリアル係数を含む項の値は小さく、第2ビリアル係数の 項に対して無視でき、

と表される。

注22:ファンデルワールスの式の詳細

実在気体の P-V-T 関係式を解明するためには、分子の大きさと分子間力を考慮しなければならない。分子が大きさを持つと、分子の占める体積だけ分子の運動できる体積は減少する。気体 1mol あたりの分子の占める体積、すなわち排除体積を b とすると、分子が運動できる有効体積 はV_m – bとなる。したがって、理想気体の状態方程式は次のように修正される。

 $P^{ideal}(V_m - b) = RT P^{ideal}$:理想気体の圧力

次に、分子間力が存在する場合、容器内の気体分子のうち器壁近くの分子は、(壁と分子との 相互作用はないので)中心部の分子に一方的に引きつけられることになる。圧力は分子が容器の 壁に衝突することで生じる力であるから、分子間力が働く場合には、理想気体の圧力よりも小さ い圧力を示すようになる。

さて、分子間力は器壁近くの分子数と中心部の分子数とに比例する。単位体積中の分子数が密度であるから、分子間力は密度ρの2乗に比例し、比例定数をαとすると、

$$a\rho^2 = \frac{a}{V_m^2}$$

で表される。したがって、実在気体の圧力 P は理想気体の圧力 P^{ideal}を次のように補正することになる。

$$\mathbf{P} = P^{ideal} - \frac{a}{V_m^2}$$

これを $P^{ideal}(V_m - b) = RT$ に代入すると、気体 1mol および nmol について次のファンデルワールスの式が与えられる。

$$\left(P + \frac{a}{V_m^2}\right)(V_m - b) = RT$$
$$\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$

a および b は、分子間力および分子の大きさに関係するファンデルワールス定数という定数であり、物質の種類だけで定められる。A,b は物質の臨界点に注目することで式で表すことができるが、ここでは省略する。

注23、25、26、28、29:このあたりの式の導出については、長くなる&難しいので省略する。興味のある人は、<u>http://www.h5.dion.ne.jp/[~]antibody/index.htm</u>にすべて導出が記されているので参照されたい。

注24:水和イオンについて

水分子を半径 0.14 nm の球状で 6.17×10⁻³⁰ Cm のモーメントを持つ点双極子と仮定し、一価 の Na^+ イオン(半径 0.095 nm)と隣接しているとした時、相互作用エネルギーの大きさの最大 値は 96 kJ/mol となる。この値は実測値とよく一致し、また室温での熱エネルギーよりも十分大 きい。したがって、水溶液中で水分子はイオンに強く引きつけられ、かつ、ポテンシャルエネル ギーが最小になるように配向する。すなわち、正イオンの周囲では、 $\theta = 0^\circ$ 、負イオンの周囲 では $\theta = 180^\circ$ の配向をとる。このように、水分子を周囲に引きつけたイオンは水和イオンと呼 ばれる。

注27:分極率

分極率とは、原子や分子の電子雲などがもつ電荷分布の通常の状態からの偏りを表す物理量で あり、次式で定義される。

 $\mu = \alpha E$ E:電場、 μ :原子や分子の双極子モーメント

ここで、分極率 α はスカラー量であることに注意したい。これは、加えられた電場と平行な分極成分のみが誘起されることを意味している。例えば、x 方向の電場は双極子モーメント μ の x 成分のみを誘起する。しかしながら、x 方向の電場が双極子モーメント μ の y 成分、z 成分を誘起する。このような場合、 α は与えられた座標系に関する 2 階のテンソル、3×3 の行列で表される。

注30: 狭義では、前述の London 相互作用だけをファン・デル・ワールス相互作用と称する こともある。実際、分散力相互作用は永久双極子を必要とせず、孤立した原子同士の間でも作用 するという性格があり、ファン・デル・ワールス相互作用の起源の中でもっとも普遍的である。 加えて実際の大きさにおいても、他の2つの寄与を上回ることが多い。

注31:3体以上の間のファン・デル・ワールス相互作用

2体間のファン・デル・ワールス相互作用の本質的な部分は、このように表すことができるが、 これが3体以上となると話は複雑になる。例えば、A,B,Cの3つの分子が存在したとすると、 分子Aが感じるポテンシャルは、分子B,Cがお互いに相互作用し、それぞれの分子がその分極 能に応じて分極し、その結果形成される電場によるものである。したがって、分子Aの受ける ファン・デル・ワールス相互作用ポテンシャルは、A-B間,A-C間の相互作用を独立に考えて 足し合わせではない。これをファン・デル・ワールス相互作用の非加算性と呼ぶ。巨視的な物体 間のファン・デル・ワールス相互作用を厳密に考えるときなどには、この事実を考慮しなければ ならない。

注32: 界面活性剤のような親水基と疎水基を有する両親媒性分子が、水の中でミセルを形成す るのも、同じ原理による。水中で界面活性剤は疎水基が親水基を外側に向けた形で集合し、分子 会合体であるミセルを形成する。また、タンパク質の機能発現に重要な役割を果たしている3次 元立体構造も、この疎水性相互作用の影響を受けている。水中のたんぱく質分子は、疎水性相互 作用のために、その疎水部分が水に触れないように内部に折りたたまれて配置されるからである。

注33: さまざまな炭化水素分子が水中へ分散する場合の ΔG は、炭化水素分子の表面積にほぼ 比例することが見出されており、これは、再配向しなければならない炭化水素分子の周囲の水分 子の数が、炭化水素分子の表面積によってほぼ決まるからである。